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A B S T R A C T  

A new fuzzy reasoning that can solve two problems of  conventional fuzzy 
reasoning by combining an artificial neural network (NN) and fuzzy reasoning is 
proposed. These problems are (1) the lack of  design for a membership function 
except a heuristic approach and (2) the lack of  adaptability for possible changes in 
the reasoning environment. The proposed fuzzy reasoning approach solves these 
problems by using the learning function and nonlinearity of  an NN. First, the 
problems involved in conventional fuzzy reasoning and the NN used in this paper 
are identified. Then a proposed algorithm is formulated and a concrete explanation 
using realistic data is developed. An example structure of  an NN-driven fuzzy 
reasoning system is given, and two applications of  this method are presented. This 
new fuzzy reasoning is capable of  automatic determination of  inference rules and 
adjustment according to the time-variant reasoning environment because of the use 
of  NN in fuzzy reasoning. This proposed method can be applied to NN modeling 
and AI  and is considered from the standpoint of  the explicit incorporation of 
knowledge into the NN structure. 

K E Y W O R D S :  f u z zy  reasoning, neural network, membership functions 

I N T R O D U C T I O N  

Fuzzy reasoning can express the qualitative aspect of human logic. Since it 
realizes the flexible reasoning corresponding to human logical reasoning, 
extensive research has been conducted into fuzzy reasoning. Its practical 
applications are now being seen not only in various control fields but also in AI 
and operation research. However, two problems of conventional fuzzy 
reasoning have not been solved yet: the method of determining membership 
functions and the adaptation of reasoning to the environment. The method 
proposed here is to solve these problems by using an artificial neural network, 
which we denote by NN. Since this method is an elemental technology, 
extensive application fields including not only control but also estimation, 
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inference, prediction, and so on can be expected. The aim of this method and 
its formulation are described, and its effectiveness is explained through several 
applications. 

FUZZY REASONING 

Strong Points of Fuzzy Reasoning 

The following describes the typical control rules using two-value logic. 

AN EXAMPLE OF A TWO-VALUE LOGIC CONTROL RULE 

IF the cornering angle is with 20*-40* and 

the loading weight is more than 50 kg, 

T H E N  the moving velocity = 3 - cornering angle/20. 

The problem with this control rule is that it is inapplicable even if the loading 
weight is 49.9999 kg. Moreover, the control for a cornering of 20 + a 
degrees becomes uncomfortable to drive because more than two control rules 
would be irregularly and alternately applied. There is no way to solve these 
problems except to chop up the given rules to accomplish smooth control. 
However, it is impossible to achieve control of perfect smoothness except with 
infinitely many control rules. 

Fuzzy control employs the following rule: 

AN EXAMPLE OF A FUZZY CONTROL RULE 

IF the cornering angle is a moderate degree and 

the loading weight is heavy, 
THEN the moving velocity should be gradually decreased. 

This is a control rule of human concept expressed in human words. Moreover, 
the control based on this fuzzy reasoning not only makes the control rules 
easier to use but also substantially decreases the number of rules. 

To execute this inference rule, the corresponding relationship between the 
input numerical data obtained from sensors and the fuzzy sets such as 
"moderate ,"  "heavy , "  and "gradually" must be determined. This mapping 
relationship is a membership function such as the one shown in Figure 1. 

The main strong point of fuzzy reasoning is the accomplishment of distinc- 
tive separation between the " logic"  and the "membership function." This 
logic constitutes the backbone of the rule, and the membership function deals 
with the fuzziness entangled in the logic. When an expert system based on 
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Figure I, Examples of membership functions. (a) Membership function of "moderate 
cornering angle"; (b) membership function of "heavy loading weight." 

two-value logic is constructed, it very often needs to reconstruct or adjust the 
rules. The main reason for this lies in the difficulty of fuzziness separation, and 
this calls for an adjustment of the logic itself. This is one of the reasons that 
rule construction based on two-value logic is difficult. 

Problems with Fuzzy Reasoning 

How should we design the membership function that is essential for fuzzy 
reasoning? The ordinary way is to assume an original membership function to 
be triangular or trapezoidal at the beginning. If  this membership function is 
found to be unfit, heuristic tuning has to be tried. This means there is no 
straightforward method for designing a membership function. This is the first 
problem to overcome. 

Since input/output variables are supposed to be independent in fuzzy 
reasoning, the membership function is designed variable by variable (Figure 
2). However, in a case such as IF the temperature & slightly higher and the 
humidity & lower, THEN the power has to be lowered slightly, the 
temperature and humidity cannot be said to be completely independent. In this 
case, the membership function requires a curved surface in three-dimensional 
space consisting of the membership value axis and the temperature-humidity 
plane (Figure 3). Therefore, when a variable number increases, it is nearly 
impossible to design a membership function in multidimensional space by 
using experience and intuition. 

A2 ~ A3 

A 1 ~ A' 

Figure 2. Conventional fuzzy rule partitions. 
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A ~. 4 3 

A1 ~ A4 

Figure 3. Proposed fuzzy rule partitions. 

The second problem of fuzzy reasoning is the lack of learning functions. 
This makes the optimization of reasoning for a time-variant environment such 
as seasonal changes impossible. In the application of fuzzy reasoning to 
mass-produced home appliances, it is hard for the producer to adjust them to 
individual consumer preferences and environments and then ship them. The 
mass producer has no choice but to adjust them to an average value at the 
factory. If fuzzy reasoning could have a low-cost learning function, the 
consumer could tune fuzzy inference rules to fit individual preferences and 
environments. This could result in an "appliance like a pet that can be trained 
to read your mind." 

PROBLEMS WITH FUZZY REASONING 
1. The lack of a definite method to determine the membership function 
2. The lack of a learning function or adaptability 

C O M B I N A T I O N  OF N E U R A L  NETWORKS 

Introduction to Neural Networks 

The brain's mechanism of information processing has been analyzed from 
the point of view of mathematics and engineering (McCulloch and Pitts [1], 
Rosenblatt [2]). It is known as associative memory or a learning machine. 
Recently developed "back-propagation" (Rumelhart et al. [3]) is an effective 
learning algorithm of multilayer perceptron and has directed attention to the 
information processing capability of artificial neural networks. This algorithm 
has been widely employed for various pattern classifications or inference 
problems expressed in terms of nonlinear functions. Reported in this paper is 
the application of reasoning and the learning function of the NN for nonlinear 
problems to fuzzy reasoning. This is started with mathematical analysis made 
on the NN. 

The biological neuron receives signals from various other neurons through 
each synapse. It fires neural pulses if these input signals exceed a certain 
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Figure 4. (a) Biological neuron; (b) neuron model. 

threshold value and will not fire for signals below the threshold. An example of 
engineering models expressing this biological concept is the multi-input, 
single-output nonlinear circuit shown in Figure 4b. Equation (1) expresses the 
relationship between the input x and the output y of this mathematical model. 

Yi  = f . o t j i x  j -I- Otoi (1) 

1 

f ( z )  - 1 + c - z  (2) 

where c~ is a connectional weight for reflecting the synapse to the model and 
f ( )  is a sigmoid function expressed in Eq. (2). The reason for employing a 
sigmoid function is that it is an on/off  function and is differentiable; that is the 
essential condition for back-propagation. 

The NN is then a number of these neural models connected to each other to 
constitute a network. The k-layer perceptron trained by the back-propagation 
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algorithm is employed as the NN in this paper. However, the proposed method 
does not necessarily limit the application of the NN to the k-layer perceptron. 

The following is the definition of NN employed in this paper. 

DEFINITION 

( a) The k-layer perceptron is a model consisting o f  one output layer 
and k - 1 hidden layers. 

(b) The I / 0  relationship o f  N N  is expressed by the equation 

y = NN(x )  (3) 

(c) The term k-layers[u o x u 1 x . . .  x uk] expresses the model size, 
where u i is the number o f  neurons in the input layer, hidden 
layer(s), and output layer, and k is the number o f  layers. 

( d) Each input layer and hidden layer has an extra unit o f  constant 1 
in addition to those specified by ( c). This unit has no connection to 
the lower-layer neurons and has connections to the upper-layer 
neurons. 

(e) A l l  neuron models in the neighboring layers are connected, but 
there should be no connections within layers nor j u m p  connections 
between layers. 

Term (d) in the above definition is to express o~0i in Eq. (1). Term (e) is an 
explanation for the model used in the following section on formulation and is 
not essential for the NN. As an example, Figure 5 shows a 3-layers[3 x 2 x 2 
x 2] NN. 

An NN can attain the model identification well suited for training data 
because of its nonlinearity and learning function. This may in turn cause a case 
where the above condition is very well suited to the learning data but not to the 
evaluation data. Therefore, it is important to endow the learning data with 
enough deviation to derive a model that performs well. 

i 

Figure 5. Example structure of neural network. 
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Introduction of Neural Network into Fuzzy Reasoning 

Two problems inherent to fuzzy reasoning can be handled by the NN. The 
difference between these two technologies has to do with whether the logic is 
explicit or implicit. For fuzzy reasoning, stable reasoning can always be 
attained despite data deviations because the backbone logic is manifested as a 
rule in IF-THEN form. On the other hand, however, the rule cannot be 
expressed unless the logic is identified. Since the NN self-organizes the 
mapping relationship by learning, it is applicable even for unknown logical 
relationships. Moreover, it is capable of expressing any nonlinear relationship 
because it is itself nonlinear. However, such a nonparametric method requires 
a large amount of data. The NN might output a deviated answer if deviated 
learning data were supplied. From these differences, fuzzy reasoning is 
employed mainly for well-identified logic cases such as the control, and the 
NN is used mainly for unidentified recognition rules such as pattern recogni- 
tion. 

Consider now the problem of designing a membership function. Even if it is 
not clear, the inference rule can be automatically derived from the fuzzy rule 
partition of learning data using the learning function of the NN. Furthermore, 
an adaptive modification of the membership function is possible, because the 
NN has a learning function. 

NN-driven fuzzy reasoning is fuzzy reasoning that is driven by an artificial 
neural network. The fundamental concept is the employment of fuzzy 
reasoning for the fundamental reasoning and the NN for the determination. 
Furthermore, the adaptive modification of the membership function becomes 
possible, replacing conventional experience and intuition. 

FORMULATION OF NN-DRIVEN FUZZY REASONING 

Outline 

The outline of the proposed method is explained by taking as an example the 
control carried out by two inputs, x~ and x2, derived from two sensors. The 
algorithm consists of three major parts." 

1. The partition of inference rules 
2. The identification of IF parts (the determination of a membership func- 

tion) 
3. The identification of THEN parts (the determination of the amount of 

control for each rule) 
The first part is the determination of the number of fuzzy inference rules and 

the combination of data belonging to each rule. These data are grouped by a 
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Figure 6. Design of membership functions using an NN. (a) Input data space; (b) NN 
that determines membership function; (c) data space that is partitioned for fuzzy rules. 

clustering method, and the number of groups equals the number of inference 
rules (Figure 6a). 

The second part is the attribution of arbitrary input for each rule (corre- 
sponding to the upper group) to each rule. This derives the membership 
function for each rule and corresponds to the identification of IF parts (the 
condition parts) of the rule. It should be noticed that this procedure combines 
all the fuzzy variables (x~ and x 2 in Figure 6's case) in the IF part and 
constitutes a hypersurface membership function. We have used the NN for this 
determination. The NN can form a continuous membership function governing 
entire rules internally. It was proved that an arbitrary continuous function can 
be constituted by an NN having at least one hidden layer (Funahashi [4]). 

The third part of the algorithm is the determination of THEN parts (the 
conclusion parts). The NN is supervised by the learning data and the control 
value for each rule as in (2). Fundamentally, another control method could be 
used, but the NN has better adaptability considering the later described 
systems. 

Formulation 

The detailed formulation of the NN is explained in the following example of 
fuzzy modeling included in fuzzy control (Hayashi and Takagi [5, 6]). 
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The THEN part in the system control is responsible for inferring the exact 
control value. One of these methods is the fuzzy modeling taking the form of 
" IF  x e A  s, THEN y = u(x)," wherein x is an input vector, A s is the fuzzy 
set of the sth partitioned rule spaces (Figure 2), and u() appoints an inference 
function for the control operation. In NN-driven fuzzy reasoning, A s is 
partitioned by an NN as shown in Figure 3, and u() is the NN itself. The 
following shows each step for this. 

STEP 1 Define the observed value as Y i ,  t h e  output, and the input variables as 
x~, j = 1,2 . . . . .  k. In this step the x j, j = 1,2 . . . . .  m, m < k, related to 
the observed value y are selected by the NN. This is done by the backward 
elimination method using the sum of squared errors as a cost function. This is 
to eliminate the input variables attributed to noise and to select only those input 
variables that have significant correlations to the observed values. 

STEP 2 The input/output data (x i, Yi )  are then divided into training data (TRD 
of n t )  and checking data (CHD of no) for model estimation, where n = n t -l- 

F / c  . 

STEP 3 The partition of the TRD is found by a clustering method. The best 
number of partitions is decided in view of the distance between the clusters in a 
clustering dendrogram. Each of the TRD divided into r groups is expressed by 
R s, s = 1,2 . . . . .  r, and the TRD of R s are expressed by (x~, y{), where 
i = 1 , 2  . . . . .  ( n t )  s, and ( n y  are TRD numbers in each R s. The division of 
m-dimensional space into r here means that the number of inference rules is 
set to be r. 

STEP 4 This step is the identification of the constitution of each IF part in 
NNme m (NN generating the membership functions). If x i are the values for the 
input layer, w 7 in the following are assigned as the supervised data for the 
output layer: 

1, x i E R  s 
w S  = O, x i ~ R  s i = 1 . . . . .  n t ;  s = 1 . . . . .  r 

The learning of NNme m is conducted so that these w] can be inferred from the 
input x. Thus, the NNrnem becomes capable of inferring the degree of attribu- 
tion ~s of each training data item x i to RS. We have defined the membership 
function of the IF part as the inferred value ~ that is the output of the learned 

NNmem, that is, 

( ) ^s i =  1,2,  . n ] ~ A  s X i ~ W i ~ . .  , 
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STEP 5 This step is the identification of each THEN part. The structure of the 
THEN part of each inference rule is expressed by the input/output relation- 
ship. The TRD input xSl . . . . .  x~m and the output value YT, i = 
1,2 . . . . .  (n t )  s, are assigned to the input and output of the NN s. This NN s is 
the NN of the THEN part in R s. The training of NN s is so conducted that the 
control value can be inferred. The CHD input values xi~ . . . . .  Xim, i = 
1, 2 . . . . .  n c, are substituted in the NN thus obtained to obtain the sum O,~ of 
squared errors. 

nc 

07, = ~ { Y i -  Us(Xi) " gAS(Xi)} 2 (4) 
i=1  

This estimated value us(x i) is obtained as the output of NN s. There is another 
idea to calculate O s with the weight; this is 

nc 

Osm = ~ ]AAS(Xi){y  i -- Us(Xi) " I~AS(Xi)} 2 ( 4 ) '  
i=1  

We have used the following index to decide the best iteration number of NN 
learning and prevent overlearning. 

Hc (nt)S ~2 
i s = ~ { Y i -  / , / s (Xi)  

(Ht )  s "1- Flc i= 1 

(n,) s nc 

usIx )" + ( n , )  s + n~ j=~ 

I f  the NN s has overlearned data, the error of the TRD becomes small but the 
error of the CHD becomes large. Therefore the number of iterations that gives 
the smallest I s, is the best. 

STEP 6 This is the simplification of THEN parts by a backward elimination 
method. Among the m input variables of an NN that infers the control values 
of  the THEN parts for each inference rule, one input variable x p is arbitrarily 
eliminated, and the NN of each THEN part is trained by using the TRD as in 
step 5. Equation (5) gives the squared error O,~P_ 1 of the control value of the 
sth rule in the case of eliminating x p. This O sp_ 1 can be estimated using the 
CHD: 

n c 
O~P-I = ~ { Y i -  us (x i ) "  gAs(xi)} 2, p = 1,2 . . . . .  m (5) 

i=1 

By comparing Eqs. (4) and (5), if 

OSm > 0~,'_, (6) 
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the significance of the eliminated input variables x p can be considered 
minimal, and x p can be discarded. 

STEP 7 The same operations as those performed in step 5 are carried out for 
the remaining m - 1 input variables. Steps 5 and 6 are cyclically repeated in 
the succeeding step until Eq. (6) would not hold for any remaining input 
variables. The model that gives the minimum O s value is the best NN. 

Thus, steps 1-7 determine the IF parts and THEN parts of each inference 
rule. The system identification process for the fuzzy model is then completed. 

STEP 8 The following equation can derive the final control value y*: 

"AS(Xi)  " Us(Xi) 
y .  = s=l , i = 1,2 . . . . .  n (7) 

.A,(xi) 
S = I  

where Us(X i) is an inferred value obtained when CHD is substituted in the best 
NN obtained in step 7. 

Detailed Supplemental Explanations 

Among the steps shown above, a concrete explanation is supplemented here 
for step 2 by which the nonlinear membership function can be automatically 
determined. 

It is natural to consider the application of the same control rule to input data 
that share high similarity. Therefore, the training data are clustered in this way 
in step 3 (Figure 6a). Each of these clustered groups corresponds to one of the 
rules such as " I F  x~ is small and x 2 is large, T H E N  . . . .  " In the case shown 
in Figure 6a, three rules including R ~ to R 3 exist. These rules make perfect 
fits at the typical points (training data points) in these clusters. A gradual fitting 
to multiple rules has to be conducted as one nears the boundary region. The 
degree of attribution is a membership value. This shape could be the one 
shown in Figure 6c, which is a top view; the crosshatched area is a region in 
which the membership functions intersect. 

The procedure to derive such a membership function corresponds to step 4. 
Here we propose to use the NN shown in Figure 6b. The variables of the IF 
parts (x~ and x 2 in this case) are assigned to the input. At the output layer, the 
rule number neuron belonging to input variables and the others are expressed 
by 1 and 0, respectively. A strong point of the NN is the correspondence of an 
analogous output to an analogous input. Only the × points in Figure 6a are 
used for the training, but the similar output (i.e., the similar control rule) is 
obtained for the input data that is neighbor to the training data. Moreover, an 
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Figure 7. Membership function o f "  middle age." 

NN that has finished its training outputs the best balanced attribution value for 
each rule when those input data are in the intersecting rules. This is the value 
of membership functions; in other words, this NN comprehends all the 
membership functions for each rule it contains. 

Figure 7 shows an example of membership functions internally formulated 
by an NN. As a result of NN learning from nine data consisting of "ap- 
parently not middle-aged" and "apparently middle-aged," this NN outputs 
the membership function "middle-aged" (Figure 7). The variable is " age , "  
which is one-dimensional. The membership function shown in Figure 7 can be 
easily designed by calling on experience and intuition, which would be useless 
for two-dimensional or multidimensional hypercurved surfaces. 

Examples of Concrete Application 

Following the above procedures, this formulated NN-driven fuzzy reasoning 
is applied to the simple previously reported numerical data (Kang and Sugeno 
[7], Kondo [8]). These data were made from y = (1.0 + x °5 + x~- 1 + x31.5)2 
and random noise x 4 (Kondo [8]). 

STEPS 1, 2 Table 1 shows the input/output data. Items 1-20 are the training 
data (TRD) and 21-40 are the checking data (CHD); thus n t = n c = 20, and 
k = 4. Table 2 shows the result of the training for 15,000 iterations with a 
3-layers[4 x 3 x 3 x 1] model that uses all variables and a 3-layers[3 x 3 x 
3 x 1] model for the selection of input variables. Both training and checking 
data were used for these learning models. 

The estimation performance of the model that eliminated x 4 was similar to 
that of the model that used all variables relatively. This means that input 
variable x 4 is negligible. We abandoned x 4 in the succeeding experiment. 

STEP 3 The TRD are partitioned by using a conventional clustering method. 
The training data thus partitioned are shown in Table 3. 



NN-Driven Fuzzy Reasoning 203 

T a b l e  1. Example  Inpu t /Ou tpu t  Data  

Training Data (TRD) Checking Data (CHD) 

No. y x 1 X 2 X 3 X 4 No. y x~ X 2 X 3 X 4 

1 11.110 1 3 1 1 21 9,545 1 1 5 1 
2 6.521 1 5 2 1 22 6.043 1 3 4 1 
3 10. 190 1 1 3 5 23 5.724 1 5 3 5 
4 6.043 1 3 4 5 24 11.250 1 1 2 5 
5 5.242 1 5 5 1 25 11.110 1 3 1 1 

6 19.020 5 1 4 1 26 14.360 5 5 2 1 
7 14. 150 5 3 3 5 27 19.610 5 1 3 5 
8 14.360 5 5 2 5 28 13.650 5 3 4 5 
9 27.420 5 1 1 1 29 12.430 5 5 5 1 

10 15.390 5 3 2 1 30 19.020 5 1 4 1 

11 5.724 1 5 3 5 31 6.380 1 3 3 5 
12 9.766 1 1 4 5 32 6.521 1 5 2 5 
13 5.8700 1 3 5 1 33 16.000 1 1 1 1 
14 5.406 1 5 4 1 34 7.219 1 3 2 1 
15 10.190 1 1 3 5 35 5.724 1 5 3 5 

16 15.390 5 3 2 5 36 19.020 5 1 4 5 
17 19.680 5 5 1 1 37 13.390 5 3 5 1 
18 21.060 5 1 2 1 38 12.680 5 5 4 1 
19 14.150 5 3 3 5 39 19.610 5 1 3 5 
20 12.680 5 5 4 5 40 15.390 5 3 2 5 

Source: Kang and Sugeno [7]; Kondo [8]. 

T a b l e  2. Resul ts  o f  Backward  El imina t ion  Us ing  a Neura l  N e t w o r k  

Sum of Squared Errors 

When all variables are used 0.0007 
When x~ is eliminated 0.3936 
When x 2 is eliminated 0.1482 
When x 3 is eliminated 0.0872 
When x 4 is eliminated 0.0019 

T a b l e  3. Rule  Par t i t ion o f  Tra in ing  Data  

Control Rule Training Data Numbers 

R l 1 , 2 , 3 , 4 , 5 ,  11, 12, 13, 14, 15 
R 2 6, 7, 8, 9, 10, 16, 17, 18, 19, 20 
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Table 4. Membership  Value for Rule R s 

Training Data Membership Value 

No. x I x 2 x 3 Rule 1 Rule 2 

1 1 3 1 0.9970 0.0031 
2 1 5 2 0.9972 0.0028 
3 l 1 3 0.9972 0.0028 
4 1 3 4 0.9973 0.0027 
5 1 5 5 0.9974 0.0026 

6 5 1 4 0.0028 0.9971 
7 5 3 3 0.0028 0.9972 
8 5 5 2 0.0027 0.9972 
9 5 1 1 0.0027 0.9973 

10 5 3 2 0.0027 0.9973 

11 1 5 3 0.9973 0.0028 
12 1 1 4 0.9973 0.0027 
13 1 3 5 0.9974 0.0026 
14 1 5 4 0.9973 0.0027 
15 1 1 3 0.9972 0.0028 

16 5 3 2 0.0027 0.9973 
17 5 5 1 0.0027 0.9973 
18 5 1 2 0.0027 0.9973 
19 5 3 3 0.0028 0.9972 
20 5 5 4 0.0029 0.9971 

STEP 4 The 3-layers[3 x 3 × 3 x 2] model  is trained for 5000 times to infer 
w/s ~ {0, 1}, that is, the degree of  attribution of  the training data xi ,  i = 
1, 2 . . . . .  20, to A s, by the value of  ~,/s e [0, 1]. By this training, the fuzzy 
number A s in the IF  parts is derived.  Table 4 shows the membership values of  
the fuzzy number A s of  IF  parts for the control rule R s. 

STEP 5 The inference formula for determining the control value for the THEN 
parts in various control rules is identified. Table 5 shows the output errors O~ 
derived after the 20,000 iterations of  training of  the 3-layers[3 x 8 × 8 x 1] 
model.  

STEPS 6 AND 7 The sum of  the squared errors O~ p when one of  the arbitrary 

Table 5. Output Errors 

Control rule 1: O I 27.86 

Control rule 2 : 0 2  1.93 
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Table 6. Output Errors After Elimination of Variables 

Rule 1 Rule 2 

From Table 5 O~ = 27.86 032 = 1.93 

When x 1 is eliminated O~ 1 = 42.84 0221 = 0.93 

When x 2 is eliminated O~ 2 = 74.71 0222 = 119.61 

When x 3 is eliminated O~ 3 = 55.27 O~ 3 = 73.28 

input variables is removed from the IF-parts model with control rule R s is 
derived. This sum, shown in Table 6, was obtained for control rules R ~ and 
R 2 after the learning of the 3-layers[2 x 8 × 8 x 1] model for 10,000-20,000 
iterations. 

Comparing step 5 and step 6 for each control rule, the following conditions 
are seen to exist: 

All of O~ p > O~(=  27,86) 

and 

O~1(=0.93)  < 0 5 ( =  1.93) 

Therefore, the NN of step 5 is designated as the conclusion parts model for 
control rule 1. The computation is continued for control rule 2, and is 
terminated by the repeated computations in step 2. Thus, the resulting NN, 
which has the input (x  2, x3), is designated as the conclusion model. There- 
fore, the obtained fuzzy model is expressed by the following: 

e l :  I r x  --- ( x , ,  x2, X3) i s A ' ,  T H E N  yl = N N 1 ( x l  ' x2 ' x3 ) 

R2: I F x  = (Xl,  x2 ,  x3) i s A  2, T H E N  y2 = N N z ( x 2  ' x3 ) 

Figure 8 shows the plot of rule clustering of R s in the x 2 x 3 plane, and 
Table 7 lists the y* of Eq. (7). 

SYSTEM C O N S T R U C T I O N  

We now can execute the NN-driven fuzzy reasoning using the above 
formulation. Figure 9 shows an example of this system executing this reason- 
ing. The NNme m at the left end is the NN of Figure 6b generating the 
membership functions corresponding to the IF parts derived in step 4. NN~-NN r 
are the NNs of the THEN parts prepared in steps 6-8.  This system weighs the 
output of the THEN part by the membership values of the IF parts and 
computes the final output value (step 9). 
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Figure 8. Hypercurved plane of membership function. (a) Display area of membership 
functional plane for (b) and (c). (b) Membership function of role 1. (c) Membership 
function of rule 2. 
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Table  7. Output of Trained NN-Driven Fuzzy Reasoning 

Training Data Checking Data 

No. y y* W /  Wi 2 No. y y* IV/1 IV/2 

1 11.110 11.136 0.9970 0.0031 21 9.545 8.882 0.9974 0.0027 
2 6.521 6.534 0.9972 0.0028 22 6.043 6.140 0.9973 0.0027 
3 10.190 10.210 0.9972 0.0028 23 5.724 5.712 0.9973 0.0028 
4 6.043 6.140 0.9973 0.0027 24 11.250 10.547 0.9971 0.0030 
5 5.242 5.370 0.9974 0.0026 25 11.110 11.136 0.9970 0.0031 

6 19.020 18.995 0.0028 0.9971 26 14.360 14.334 0.0027 0.9972 
7 14.150 14.134 0.0028 0.9972 27 19.610 19.061 0.0028 0.9972 
8 14.360 14.334 0.0027 0.9972 28 13.650 13.918 0.0029 0.9971 
9 27.420 27.373 0.0027 0.9973 29 12.430 12.293 0.0030 0.9969 

10 15.390 15.383 0.0027 0.9973 30 19.020 18.995 0.0028 0.9971 

11 5.724 5.712 0.9973 0.0028 31 6.380 7.178 0.9972 0.0028 
12 9.766 9.791 0.9973 0.0027 32 6.521 6.534 0.9972 0.0028 
13 5.8700 5.747 0.9974 0.0026 33 16.000 11.239 0.9969 0.0032 
14 5.406 5.450 0.9973 0.0027 34 7.219 9.018 0.9971 0.0029 
15 10.190 10.210 0.9972 0.0028 35 5.724 5.712 0.9973 0.0028 

16 15.390 15.383 0.0027 0.9973 36 19.020 18.995 0.0028 0.9971 
17 19.680 19.652 0.0027 0.9973 37 13.390 13.892 0.0030 0.9970 
18 21.060 21.046 0.0027 0.9973 38 12.680 12.672 0.0029 0.9971 
19 14.150 14.134 0.0028 0.9972 39 19.610 19.061 0.0028 0.9972 
20 12.680 12.672 0.0029 0.9971 40 15.390 15.383 0.0027 0.9973 

Y 

Xl x 2 ......... X m 

Figure 9. Block diagram of NN-driven fuzzy reasoning system. NNme m, NN that 
decides membership values of all rules; NNI-NN r, NNs that determine control values 
and output Yi for ith rule; y*, final control value; x j, input variable; W s, membership 
value. 
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This fundamental system can be developed and expanded. For instance, if 
the input is not a single defined value but is a fuzzy number, the plural inputs 
of the NN can be adopted for one of the fuzzy number inputs. Likewise, if the 
output value is a fuzzy number, the plural outputs can be applied. 

This construction is highly suitable for parallel processing, and this is 
another strong point of this system. Each NN corresponding to the IF part and 
THEN part of each ruel can be independently processed; furthermore, the NN 
itself is suitable for parallel processing. 

APPLICATIONS 

The effectiveness of NN-driven fuzzy reasoning is demonstrated by two 
reasoning problems. One is the estimation of COD (chemical oxygen demand) 
density in Osaka Bay, and the other is the estimation of the roughness of a 
ceramic surface finished by a cup-shaped diamond whetstone. 

Estimation of COD Density in Osaka Bay 

The results of COD density measurements in Osaka Bay conducted between 
April 1976 and March 1979 were used as input/output data for inference 
conducted by NN-driven fuzzy reasoning. The input/output variables are as 
follows: 

y COD density, ppm 

x I water temperature, °C 

x 2 transparency, m 

x 3 dissolved oxygen density, ppm 

x 4 salty density, % 

x 5 filtered COD density, ppm 

Fujita and Koi [9] previously reported on the estimation of COD density y 
by using the GMDH method. They first estimated the filtered COD density x5 
from a diffusion simulation model. Next they estimated output COD density y 
by using this x 5 and other input variables employed for the GMDH (Group 
Method of Data Handling) model. 

We employed the same data for estimating the COD density y by NN-driven 
fuzzy reasoning. The model was obtained by the experiments conducted under 
the following conditions. 

1. Thirty-two data points acquired during a period from April 1976 to 
December 1978 were used for the estimation. Twelve more data points 
obtained during the period from January to December 1979 were em- 
ployed for the evaluation. The result of the backward-elimination experi- 
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Figure 10. Estimation of COD density in Osaka Bay by NN-driven fuzzy reasoning. 

ment showed that it was necessary to employ all input variables for 
estimation. 

2. The structure of the NN model employed in the succeeding experiment 
was as follows: 

For the determination of IF-part structure: 3-layers[5 × 12 × 12 × 2] 

For the determination of THEN-part structure: 

3-1ayers[m × 12 x 12 × 1], m = 5 ,4  . . . . .  

3. There were 1500-2000 iterations of learning. The resulting NN-driven 
fuzzy reasoning was as follows: 

RI: I F x  = ( x ,  . . . . .  x s )  i s A  1, THEN y l  = N N , ( x l ,  x2 ' x3 ' x4 ' x5 ) 

R2: I F x  = ( x ,  . . . . .  x s )  i s A  2, THEN y2 = N N 2 ( x ,  ' x2 ' x3 ' x5 ) 

Figure 10 shows the estimated value y* and the observed data. 
Table 8 shows the comparison between the estimated COD density derived 

by GMDH and the estimated COD density obtained by the proposed method 
2 ]  1 

/ 2 f 

using the model evaluation index D = [ ~ /  ( Y i - Y * )  ] " 

Table 8. Results of Evaluation 

Training Data Checking Data 

GMDH [8] 3.63 2.134 
Proposed 3.52 1.58 
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Estimation of  Roughness  of  a Finished Ceramic Surface 

The next is an example of application of NN-driven fuzzy reasoning for 
estimating the roughness of a surface finished by a diamond grinding wheel. 
The input/output variables were 

y roughness of ceramic surface, #m 

x 1 rim velocity of diamond grinding wheel, m/rain 

x 2 moving velocity of ceramic plane, mm/min 

x 3 cutting depth of diamond grinding wheel, mm 

x 4 diamond size 

x 5 concentration of diamond grinding wheel 

Various whetted surface conditions were assumed by using the above input 
variables, and the ceramic plane was whetted by using a machining center. The 
finished ceramic surface was measured by using surface-roughness-measuring 
equipment. On the other hand, the roughness y was estimated by our proposed 
method. 

Experiments were conducted under the following conditions for obtaining an 
inference model. 

1. Thirteen data points with the following large deviations were used for the 
estimation: 

- -  2 s   (xi=xi)ij ,j 
- -  2 

~ -~ ! Z (Xij  -- Xj) 
n i 

2. The remaining eight data points were used for the evaluation. 
3. The structure of the NN and the number of learning iterations were the 

same as those in the Osaka Bay problem. 
From the experimental results we obtained the following NN-driven fuzzy 

reasoning: 

R ' :  I F x  = ( x ,  . . . . .  x s )  is A 1, THEN y '  : N N , (  x 1, x z ,  x4, xs) 

RZ: I F x  = ( x l  . . . . .  x s )  i s A  2, T H E N  yZ = N N 2 ( x ~  ' x2 ' x3 ' x4 ' x5 ) 

R 3 :  I F  x : ( x  1 . . . . .  x 5) i s a 3 ,  T H E N  7 3 : N N  3(x2 ,  x 4) 

Figure 11 shows the estimated value y* and the observed data. 
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Figure 11. Estimation of roughness of whetted ceramic surface by NN-driven fuzzy 
reasoning. 

Despite the limited quantity of available data, these two applications consis- 
tently show results better than those obtained by conventional methods. 

CONCLUSION 

This paper reports the formulation of the determination of fuzzy inference 
rules and the method of fuzzy reasoning using NN models. The most signifi- 
cant features are the feasibility of (1) automatic partition of a fuzzy rule and the 
best design of membership function and (2) the automatic adjustment of a 
membership function for a change of environment achieved by using the 
learning function of an NN. The experiments proved that the proposed system 
performed better than conventional reasoning systems. 

Problems for future consideration include the verification of these results in 
extensive application fields. For example, the first point could be the automatic 
preparation of a fuzzy inference rule from the control data manually derived by 
an expert. The other example could be the automated adaptation of a fuzzy 
reasoning rule when fuzzy reasoning developed for environment A is to be 
applied to environment B. 

The above considerations were made from the standpoint of fuzzy reasoning. 
From the standpoint of NNs, this proposed method corresponds to the explicit 
incorporation of knowledge into the NN structure as a form of fuzzy inference 
rule. Ways in which knowledge can be incorporated into the NN to improve its 
capability are being discussed. The conventional methods to incorporate 
knowledge are (1) the reflection of those on the input pattern, (2) the influence 
on performance by prewiring the network, and (3) the combination of NNs 
having different functions. The NN described here includes knowledge ex- 
pressed in IF-THEN form. This expression is of far higher grade than 



212 Hideyuki Takagi and Isao Hayashi 

conventional methods, so there is a possibility to realize powerful NN capabil- 
ity. Furthermore, development of the NN in the AI field as a neural expert 
system can be also expected. 
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