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 Extraction of Knowledge from the Topographic Attentive 
Mapping Network and its Application  

in Skill Analysis of Table Tennis 

by 
Isao Hayashi1, Masanori Fujii2, Toshiyuki Maeda2, Jasmin Leveille3, Tokio Tasaka 4 

The Topographic Attentive Mapping (TAM) network is a biologically-inspired classifier that bears similarities 
to the human visual system. In case of wrong classification during training, an attentional top-down signal modulates 
synaptic weights in intermediate layers to reduce the difference between the desired output and the classifier’s output. 
When used in a TAM network, the proposed pruning algorithm improves classification accuracy and allows extracting 
knowledge as represented by the network structure. In this paper, sport technique evaluation of motion analysis 
modelled by the TAM network was discussed. The trajectory pattern of forehand strokes of table tennis players was 
analyzed with nine sensor markers attached to the right upper arm of players. With the TAM network, input attributes 
and technique rules were extracted in order to classify the skill level of players of table tennis from the sensor data. In 
addition, differences between the elite player, middle level player and beginner were clarified; furthermore, we discussed 
how to improve skills specific to table tennis from the view of data analysis. 
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Introduction 
In human motor skill research, movement 

skill is sometimes modelled as a hierarchical 
cerebellum model with feedback and feedforward 
functions that can adapt itself to environmental 
changes (Shiose et al., 2004). Kawato (1992) 
proposed the control model of Allen-Tsukahara as 
an internal model. When a difference exists 
between the desired trajectory and the realized 
trajectory of the movement, a difference signal is 
transmitted to Purkinje cells of the cerebellum and 
controls both movement output and starting 
timing. The Purkinje cells in the cerebellum 
control forward and inverse models for voluntary  
 
 

 
movement. Based on this view of the cerebellum’s 
contribution, in the present study, an internal 
model of the cerebellum is proposed in the form 
of a neural network acting through two kinds of 
processes, namely bottom-up processing of a 
signal flow to the integral representation of 
movement from a monofunctional layer, and top-
down processing of the adjustment to the 
monofunctional layer from external observations. 

The Topographic Attentive Mapping 
(TAM) network can be traced back to the 
ARTMAP family of models. The network 
structure consists of four layers: the feature layer,  
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basis layer, category layer and class layer. The 
basis layer connects the feature layer to either the 
category layer or the class layer via bidirectional 
projections. A node in the basis layer network 
combines the bottom-input signal propagated 
from the feature layer via excitatory synapses 
with the top-down feedback signal controlled 
from the output layer via inhibitory synapses. 
Upon presentation of a training pattern, if the 
network produces inaccurate output, the 
attentional top-down signal modulates the 
synaptic weights in the class and basis layers via 
winner-take-all learning in order to minimize the 
difference between the network output and the 
desired output. At the same time, nodes can be 
added incrementally to the category layer until 
the classification accuracy on the training set 
reaches a satisfactory level. However, such an 
addition of nodes can lead to overlearning of the 
training data and hence, impair generalization 
performance. In order to address this problem, we 
propose a network pruning algorithm that can 
remove unnecessary nodes and links based on 
fuzzy information entropy (Hayashi and 
Williamson, 2001), and we apply an ensemble 
learning model to the TAM network to be able to 
make a recognition rate high by assigning 
selection weight to misclassified data. In the 
pruning algorithm of the TAM network, each 
input variable one-by-one is extracted and the 
fuzzy information entropy of each attribute is 
calculated to determine its importance. The 
importance of each attribute is computed 
indirectly as a reduction in the recognition rate 
when the corresponding link and node are 
removed. Besides improving recognition 
accuracy, the main advantage of using the 
pruning method within a TAM network is that it 
leads to a natural way of extracting knowledge 
from the network structure. The integration of the 
pruning mechanism in a TAM network also bears 
strong similarities with earlier work on learning 
in the context of fuzzy logic processes (Hayashi 
and Umano, 1993; Hayashi et al., 1996; Kosko, 
1992) as our pruning approach incorporates the 
metaphysical concept of fuzzy ID3 (Hayashi, 1996; 
Hayashi et al., 1999; Umano et al., 1994) into the 
TAM network structure, implying that the data is 
mined in the format of a fuzzy rule. Ensemble 
learning with AdaBoost (Dietterich, 2000; Freund, 
1995; Schapire, 2003) is adopted here to combine  
 

 
multiple TAM networks, each a weak classifier, 
and increase the recognition rate by differentially 
reweighting misclassified data. The final output is 
calculated with a majority rule after evaluating 
the multiple weak classifiers. According to this 
scheme, our algorithm may be considered as a 
form of a sensitive estimation method. Besides 
improving recognition accuracy, the main 
advantage of using the ensemble method within a 
TAM network is that it leads to a natural way of 
extracting a majority pattern from the data sets. 

Input to our model takes the form of time-
series extracted from motion picture data 
extracted from sensors (Kasai et al., 1994; 
Mochizuki et al., 2002). Perl and Baca (2003) 
employed the Kohonen Feature Map as a neural 
network for analysis of table tennis movement in 
order to characterize the strategic structure of 
table tennis. Parisi et al. (2015) proposed a 
learning system for providing feedback on a set of 
learned movements of powerlifting exercises 
captured with a Kinect device. The learning 
model was built upon a recursive extension of the 
Self-Organizing Map (SOM), MergeSOM. 
However, the proposed model did not aim to 
visualize a characteristic of the movement and 
produce a verbal description based on it. 
Therefore, it cannot be used to provide 
visualizations that would be useful to players. In 
our approach, we extract input attributes and skill 
rules of the forehand stroke of table tennis with 
the TAM network as an internal model (Hayashi 
et al., 2009; Maeda et al., 2014). The purpose of 
analyzing movement data with a TAM network is 
to visualize, for example, knowledge in the form 
of rules extracted from movement data. The aim 
of this research was to analyze the movement of 
players from observed data and help players to 
swing the racket based on acquired fuzzy rules. In 
order to do so, it is necessary to provide a verbal 
description of the observed data. A useful model 
of sports movements needs to provide for at least 
two kinds of capabilities: a high recognition rate 
and verbally-specified, easily understandable 
rules. Fuzzy rules based on languages can extract 
conjunctive variables with high membership 
values as important factors. This is a critical 
difference between fuzzy rules and methods 
based on statistical estimation. In this research, 
the technique rules are qualitatively specified as 
fuzzy rules from weights of network structure  
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and necessary attributes are estimated to 
distinguish the skill level. 

Material and Methods 
Participants 

The presented experiment was performed 
in the Hannan University, Matsubara, Osaka, in 
2007. Fifteen subjects were divided into three 
groups: elite players consisted of seven subjects 
who belonged to the table tennis club of the 
Hannan University, middle-level players were 
represented by three subjects who had previously 
belonged to a table tennis club during their junior 
high school or high school, and beginners 
consisted of five subjects without any table tennis 
experience. 
Measures 

Nine measurement markers were set to 
detect movement on the right upper arm of 
subjects, at 1) the acromioclavicular joint, 2) the 
acromion, 3) the head of radius, 4) the head of 
ulna, 5) the styloid process of radius, 6) the styloid 
process of ulna, 7) the right apex marker in the 
racket edge, 8) the left apex marker in the racket 
edge, and 9) the upper apex marker in the racket.  
Procedures 

A pitching machine (Yamato table tennis 
Co., Ltd., TSP2050) was set at about 30 cm from 
the end line of the table and diagonally from the 
subject. Balls were set to be thrown at elevations 
of 20 degrees, 25 speed levels and 30 pace levels. 
Subjects returned the ball in the area spanned by 
75 cm inside from the end of the table to the 
opposite side. In order to trace the trajectory of a 
subject’s movement, the forehand strokes were 
recorded for 10 min with a high-speed camera 
(Digimo Campany, VCC-H300, resolution: 
512×512 pixel, frame rate: 90 fps) placed 360 cm in 
front of the subject and at the height of 130 cm. 

A 90 fps camera was used to record subjects 
for 10 min what resulted in 54000 recorded frames. 
From this data, image sequences of 40 to 120 
frames were extracted. During each 10 min 
recording, the subject continued swinging the 
racket for 100 to 150 times. Overall, the trajectories 
generated by the elite subjects were very similar 
across swings. However, data from the elite 
trajectories could not be easily compared to that of 
the beginner and middle-level subjects due to 
variations in the start times in the latter’s 
trajectories. In addition, the last swing trajectories  
 

 
in the 10 min periods were often unreliable 
because of a lack of concentration at that time. 
Therefore, we used trajectory data for the middle 
portion of the 10 min recordings, e.g., in a 9 min 
20 s recording, we took the swing at 280 s (9 min 
20 s = 560 s, divided by two equals 280 s). In 
addition, the start time of the racket swing was 
extracted from the time when the position of the 
take-back was minimized in the x direction to the 
time when the position of the follow-through 
became greatest in the x direction. Therefore, from 
one experimental sequence consisting of swing 
movements for ten minutes, it was possible to 
extract between 40 and 120 frames of data. As a 
result, the number of training data points for 
seven subjects was approximately 600 and the 
number of testing data points for two subjects was 
approximately 200. In each image frame, two-
dimensional (x, y) coordinates of nine 
measurement markers relative to the original 
position of the subject’s shoulder on the first 
frame were obtained. The observed positions of 
markers are presented in Figure 1 and the speed 
of the horizontal direction (x) in Figure 2. 

The following observations can be made 
from Figures 1 and 2: 
 When comparing two elite players, the 

coordinates of positions from M1 to M9 
were close to each other. The correlation 
coefficients were evaluated at 0.985 in the x 
direction and 0.79 in the y direction, 
respectively. Elite players thus acquired a 
fairly stable racket swinging motion. 

 The swing pattern of elite players allowed 
them to reach maximum speed at the point 
of contact with the ball. 

 The M1 to M9 coordinate positions for two 
of the middle-level players were somewhat 
less stable: the correlation coefficients 
obtained were 0.919 in the x direction and 
0.607 in the y direction. Overall, the 
trajectories did not form a smooth, oval-
shaped forehand drive. 

 The swing speeds of middle-level players 
for markers M7 and M9 have two peaks and 
appear to be adjusted at the moment of 
impact with the ball. 

 When looking at the data of the three 
beginners, the coordinates of positions M1 
to M9 varied considerably across players. 
The correlation coefficients were evaluated  
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at 0.0703 in the x direction and -0.04 in the y 
direction. Thus, there is no single way to 
characterize the beginners’ swing pattern. 
Also, it may be noted that the shoulder (M1) 
moved more than in elite and middle-level 
players. 

 Looking at the swing speed of beginners at 
marker M9, the speed appears to be reduced 
just before hitting the ball, and subjects 
seem to wait until the ball hits the racket. 
This is sometimes referred to as either “a 
movement to meet a ball with the racket” or 
“a movement to delay the body”. Non-zero 
speeds are recorded at markers M1 and M4 
even though the speeds at M7 and M9 in the 
same image frames are both zero. 

 Regarding the width of the swing pattern in 
the horizontal direction (x) at the first (M1), 
fourth (M4) and ninth (M9) markers, elite 
players appear to swing rather compactly, 
whereas beginners make large swings. 

Statistical Analysis 
Internal Model 

In the analysis of sport skills, body motion 
is typically measured with electromyography, in 
which action potentials are recorded when 
muscular fibers are excited during movements. 
However, we used measurement markers 
attached to the body to record various limb 
positions instead. In this paper, we introduced a 
neural network as an internal model in which a 
mono-functional layer generated a single function, 
while a meta-layer adapted to environmental 
changes. Using the TAM network as a kind of the 
internal model, table tennis skills were 
characterized using both the trajectory data of 
forehand strokes and the coach’s evaluation of 
corresponding table tennis skills. 
TAM Network 

It was assumed that observation data of the 
R unit were given in M inputs and one output as 
data set D. The s-th data of the i-th input variable 
was denoted as vsi, s = 1, 2, ⋯, R, and the output 
data was represented by Os. 

Each data point was rank-ordered in the 
feature layer. In the i-th input feature, the input 
data of the R unit was sorted in ascending order 
again and the input data, Isi, was normalized. 
Using the input data Isi, the distributed data in the 
feature layer was provided as fsih. 
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where L is the number of distributed data samples, 
and h is a sample-specific suffix, h = 1, 2, …, L. fsih 
can be reduced to fih since only one input sample 
was included at a time. 

Figure 3 shows the structure of the TAM 
network. The activity value, xji, of each node in the 
basis layer was calculated by taking into account 
the excitatory synapse weight, wjih, of the 
projections from the feature layer and the 
inhibitory synapse weight, bji, from the class layer 
multiplied by the vigilance parameter ρ. The 
output, yj, from category node j was then 
calculated as follows: 
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The output of the TAM network was in turn 
given by the index of the maximally active unit in 
the class layer: 
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where pjk, k = 1, 2, ⋯, U is a synaptic weight 
between category node j and class node k. 

Let K* denote the desired output of the class 
layer for a given input vector in a training dataset. 
If the output K of the TAM network does not 
correspond to the desired output class K*, an 
“attentional” mechanism is invoked whereby the 
vigilance parameter ρ increases until either zK*/zK 
≥ OC, where OC is a threshold or the maximal 
vigilance level ρ(max) is reached, that is: 
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If the vigilance parameter ρ reaches its 
maximum level, ρ(max), one new node is added to 
the category layer. However, if the constraint 
zK*/zK ≥ OC is satisfied, weight adaptation occurs 
using a feedback signal, yj* , from the class layer 
to the category layer, computed as follows: 
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The feedback signal is then used to govern 

learning: 
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and α, λ and bj(rate) are constant parameters. 
Parameter pj(rate) acts in a way similar to the 
revision parameter in simulated annealing and 
wj(rate) is the revised value of the bias β(M) of the 
M-dimensional inputs. 

In the training phase, learning of wjih, pjk and 
bji proceeds upon presentation of each input 
datum. Each presentation of the whole training 
set is called an epoch and training consists of 
multiple epochs. After learning is completed, the 
values of wjih, pjk and bji should be close to fih, zk* 
and xji, respectively, due to winner-takes-all and 
adaptive learning (Carpenter et al., 1991). 

The usefulness of the TAM network in 
various contexts was demonstrated by 
Williamson (2001). However, one issue of the 
learning algorithm in TAM networks is that the 
unconstrained addition of nodes in the network 
can lead to severe overlearning, thereby limiting 
the generalization capability of the model. 
Furthermore, it would be advantageous to be able 
to reduce the number of features learned, i.e., to 
minimize the number of input variables while 
maintaining accuracy. In order to address both 
problems, we proposed a new algorithm for 
pruning unnecessary nodes and links after the 
node addition step in the basic learning algorithm. 

In order to introduce the pruning algorithm, 
it is useful to first summarize the structure of the 
TAM network. The four layers of the TAM 
network can be divided functionally into two 
groups: a lower level consisting of the feature and 
basis layers, and an upper level comprising the 
category and class layers. In the lower level, the 
synaptic weight wji of the i-th basis node in the j-th  
 

 
category node should be similar to the data fi of 
the i-th feature due to winner-takes-all learning. 
Therefore, the category node effectively encodes 
the distribution of the input data in the synaptic 
weights of the basis layer. On the other hand, the 
synaptic weight pjk between the j-th category node 
and the k-th class node in the upper level 
represents the proportion in which the j-th 
category node contributes to the k-th class node. 
By taking wji as a membership function, equation 
14 shows that it is possible to interpret category 
node rj as the j-th rule of a set of fuzzy rules: 
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where Ck, k = 1, 2, ⋯, U stands for the output of 
the k-th class node, and rj, j = 1, 2, ⋯, N, that of the 
j-th category node. 

From equation 14, it is possible to extract 
fuzzy rules from the structure of the TAM 
network. It can be said that an extracted fuzzy 
rule can express the relationship between input 
and output data pairs as represented by a 
network structure of minimal size following 
pruning. 

Umano et al. (1994) proposed fuzzy ID3 to 
obtain fuzzy rules from given input and output 
data pairs. In fuzzy ID3, one variable among the 
input variables is selected and the fuzzy 
information entropy is calculated. The input 
variable with the maximal fuzzy information 
entropy is deemed the most important and is 
thereby included into a fuzzy decision tree. A 
fuzzy rule that captures the relationship between 
input and output data pairs is obtained by 
repeating this selection process. The selection 
process was used as part of the pruning algorithm. 

In the pruning algorithm that we propose, 
the input variable that maximizes the fuzzy 
information entropy is extracted consecutively 
from a set of input variables in the same manner 
as in fuzzy ID3. Let I* be the set of features  
extracted from the entire input feature set when  
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fuzzy information entropy is maximized. Making 
use of I*, for the s-th data point in data set D, the 
output of the j-th category node is expressed as: 

(15)                                           . 
*'
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∈

=
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Activity ρjs can be interpreted as a 
membership function of the antecedent part of the 
j-th fuzzy rule for the s-th data point since 
equation 14 is considered as a fuzzy rule. 

In the fuzzy ID3 algorithm, whenever the i-
th attribute is selected, the conditional probability 
P(k | i) of the k-th class given the i-th attribute is 
first computed and used to determine whether 
that attribute should be an attribute of the 
decision tree. Instead of selecting the i-th attribute 
and calculating the conditional probability P(k | i), 
in our pruning algorithm, feature i was added to 
feature set I* and the probability Gjk of a data 
having k as an output class was calculated: 
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where by equation 15, 
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and Ψk is the subset of inputs with the output 
class k. 

We defined fuzzy information entropy when 
feature i was added to I* as follows: 
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where prior probability gj in category node j was 
calculated as follows. 
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The feature that maximized  the fuzzy 
information entropy was added to feature set I* 
and was denoted as i*: 
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Since necessary features are selected 
sequentially in equation 20, the order of selection 
of a feature offers a means to define the 
importance of the attribute. Feature deletion also 
proceeds sequentially by applying the three 
following strategies to prune unnecessary links 
and nodes: 
 For each category node, the strength of the  

combination of each class of the class layer  
 

 
with that category node is estimated and 
unnecessary combinations are removed. 

 For each category node, the strength of the 
combination of each feature of the feature 
layer with that category node is estimated 
and unnecessary combinations are removed. 

 For each class node, the strength of the 
combination of each category node in the 
category layer with that class node is 
estimated and unnecessary combinations 
are removed. 

The following three pruning rules were 
formulated based on the above strategies. 
 
[Pruning Rule 1] 

Link j – k’, k’ = 1, 2, ⋯, U, k’ ≠ k, between 
category node j and class node k′ is removed if the 
condition in equation 21 is satisfied for testing 
data in the j-th category node. 

(21)                                                       η≥jkG  

where η is a threshold. The link j – i’ with the 
remaining i’-th feature node that is not included 
in the feature set I*, that is, i’ ∉ I* and the j-th 
category node are removed at the same time. 
 
[Feature 1] 

If the feature i’’ selected by equation 20 
satisfies condition 22, then equation 21 is 
necessarily satisfied for a specific j, k. 
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[Pruning Rule 2] 
The link j - i between the j-th category node 

and the i-th feature node is removed if condition 
23 is satisfied for testing data in the j-th category 
node. 
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where ϑ is a threshold. The link j - i′ between the j-
th category node and the i’-th feature node, that is 
i’ ∉ I*, is removed at the same time. 
 
 [Feature 2] 

If the j-th category node satisfies equation 23 
once, then condition 23 is necessarily satisfied in 
the next pruning iteration I’*, due to the following 
assumption. 
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Then, in connection with class k and 
category j, we defined the ratio of the activity of  
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the j-th category node to the activity all category 
nodes as φjK: 
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where ΓK = {s | K=K*, K = maxkΣNj=1yjpjk}. 
Note that φjK expresses the importance of 

each category node connected to class K. 
 
[Pruning Rule 3] 

Link K – j’, along with the K-th class node, 
the most active node in the class layer, and the j’-
the category node except category node j, that is, j’, 
j’ = 1, 2, ⋯, N, j’ ≠ j, is removed if the condition 26 
is satisfied for testing data in the K-th class node: 

(26)                                                         ξϕ ≥jK  

where ξ is a threshold. 
 
[Feature 3] 

The output K of the TAM network is equal to 
the correct output K* as long as the following 
condition concerning threshold ξ is satisfied: 
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The pruning algorithm is summarized 
below: 
[Step 1] Extract arbitrary feature i and calculate 

the fuzzy information entropy H(i) of 
equation 18 over the testing data. 

[Step 2] Select a feature that maximizes the fuzzy 
information entropy and add it to 
feature set I*. Denote I* = {i*}, where i*={i 
| maxi H(i)}. 

[Step 3] As per the first pruning rule, remove link 
j – k’, k’ = 1, 2, ⋯, U, k’ ≠ k, between the j-
th category node and the k’-th class node 
if the condition 21 is satisfied for testing 
data in the j-th category node. Links j – i’ 
with the remaining i’-th feature node 
that are not included in the feature set I*, 
i’ ∉ I* and the j-th category node are 
removed at the same time. 

[Step 4] Following the second pruning rule, link j - 
i between the j-th category node and the 
i-th feature node is removed if condition 
23 is satisfied for testing data in the j-th 
category node. The link j – i’ between  
the j-th category node and the i’-th 
feature node, i’ ∉ I*, is removed at the 
same time.  

 

 
[Step 5] Based on the third pruning rule, link K – j’ 

along with the K-th class node, the most 
active node in the class layer, and the j’-
th category node, that is, j’, j’ = 1, 2, ⋯, N, 
j’ ≠ j, are removed if the condition 26 is 
satisfied for testing data in the K-th class 
node. 

[Step 6] Unnecessary links and nodes are removed. 
In addition, features with unnecessary 
links are removed. 

[Step 7] Repeat steps 1-6 until all features are 
included in feature set I*. 

The pruning algorithm yields a neural 
network with a minimal number of links and 
nodes. Since we can calculate the importance of 
each feature and eliminate unnecessary features, 
the pruning algorithm can be considered a feature 
reduction method. 
Adaboost Type TAM Network 

Adaboost is an outstanding boosting method. 
In each iteration of the Adaboost algorithm, TRD 
is selected from the set of misclassified data with 
higher weights than 50% and then these data are 
applied to a weak classifier in the consecutive 
iteration. After the weak classifier is identified, the 
weights of the data are updated. The procedure is 
repeated until a maximum number of iterations is 
reached or until the current recognition rate of 
CHD is higher than the previous recognition rate. 
The joint output is calculated by majority rule 
decision of the multiple weak classifiers M1, M2, , 
Mi, ML when CHD is given to these models. 

Results 
In the present study, the data of the two-

dimensional (x, y) coordinates of all nine markers 
were analyzed with the TAM network. Since table 
tennis skills are better characterized with time-
series, we created data sets by concatenating data 
across five consecutive frames. Another reason to 
use multiple frames as input was to be able to 
arbitrarily change the order presentation of each 
input variable to the TAM network. If the data 
had been input in the form of single frames, it 
would have not been possible to describe a series 
of racket swings. Therefore, past frames were also 
provided to the network in order to describe the 
series of swing movements. This is a method  
commonly used in Autoregressive Models (Pandit 
and Wu, 1983). In addition, our best recognition 
results were obtained when using series of 5  
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frames. The output of the model was the skill 
evaluation discretized to three levels. As a result, 
a data set consisted of 90 input variables (x and y 
coordinates of nine markers over five frames, that 
is 2 × 9 × 5) and three classes. 

The training data (TRD) consisted of three 
kinds of players, i.e., two elite players who were 
selected from three elite players, two middle level 
players and two beginners who were selected 
from four beginners, and the testing data (CHD), 
which was constituted from the data of one elite 
player and one beginner. The results were 
strongly dependent on which kind of data was 
used during training and testing. Therefore, for 
beginner subjects, the correlation coefficient of the 
position coordinate was calculated at each marker 
and a data set D which included subjects with the 
highest correlation coefficient among four 
beginners in TRD and CHD was created, 
respectively. If data had been extracted randomly 
from all swing movements across all players, we 
would not have been able to define the racket 
motion because part of the movement might be 
missing. The number of frames in a swing from 
the start position to the end position for each 
player was different as the time for each swing 
movement was different for beginners, middle 
and elite players. Therefore, two players for the 
beginner and middle level and three for the elite 
level were used so that the amount of data for 
each level was approximately the same. Using the 
two extremes (elite and beginner) does not fully 
test the TAM. It is likely that these two categories 
could easily be separated by using simple rules. A 
more balanced and systematic approach would be 
to put aside one elite, one middle level and one 
beginner player for testing and the rest of athletes 
for training. All other participants would be then 
assigned to combinations to the testing group and 
the rest to training. This way all participants 
would become part of the testing group in all 
combinations with others, and they would be also 
part of the training group with others. Such a 
bootstrap method would provide an unbiased 
analysis. 

The recognition rate obtained with the TAM 
network for TRD was 53.7%, and the recognition 
rate for CHD was 57.5%. This low accuracy could  
in part be due to a difference in the number of 
observations for each class. Therefore, for data set 
D, we constituted datasets by adding four  
 

 
consecutive frames to each initial input frame to 
get 5-frame long sequences and let the number of 
datasets increase by the added amount of data. 
The result is shown in Table 1. TAM (D) means 
the recognition rate of data set D, and TAM (D+) 
shows the recognition rate of the revised data set 
D with added data. Simultaneously, the 
recognition rates of C4.5, Native Bayes Tree 
(NBT), Random Forest (RF) are shown for 
comparing the TAM network with their data 
mining methods for data set D. In particular, C4.5 
is an algorithm used to generate a decision tree 
developed by Quinlan (1993) and is an extension 
of the ID3 algorithm. 

The recognition rate for the TAM network 
using dataset D+ improved compared to when 
using D. The recognition rates of NBT and RF as 
to TRD equalled 100%, and that of C4.5 was 
98.1%, which could be explained as overfitting 
given the corresponding low accuracy of testing 
data. The differences in recognition rates across 
training and testing sets were 67.2% and 74.6% for 
NBT and RF, respectively. Correspondingly, the 
difference between training and testing sets for 
C4.5 was 54.8%. This suggests again that NBT, RF 
and C4.5 overfitted the training data. On the other 
hand, differences in recognition rates between 
training and testing sets for the TAM(D+) and 
TAM(D) network were rather small, at the level of 
18.4% and -3.8%, respectively. This suggests the 
TAM network did not overfit the training data. 
However, because the TAM network did not 
achieve high recognition rates on either the 
training or testing set, we re-trained the TAM 
network with Adaboost and showed the results in 
the next session. 

Next, the sensitivity of markers was analyzed 
using a feature selection method. The selection of 
variables should be based on increases and 
decreases in the recognition rate. In general, the 
recognition rate decreases when reducing the 
number of variables. However, when unnecessary 
variables are removed this decrease is not 
significant. Conversely, when important variables 
are removed the recognition rate decreases 
greatly. Therefore, we should note the rate of 
increases and decreases in the recognition rate 
rather than its value. In the results of the  
experiment on variable selection, D+ was used as 
the data set. When all nine markers were used, the 
number of input variables was 90. That number  
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decreased to 70 inputs when the number of the 
markers was decreased from nine to seven. In 
particular, we should pay attention to the variable 
of which the recognition rate decreased when 
reducing variables. The resulting recognition rates 
when removing markers are shown in Table 2. We 
showed that the average recognition rate was 10 
times greater compared to the one obtained for 
TRD. When M1 and M2 were temporarily 
removed, the recognition rate of the TAM 
network decreased from 61.2% to 42.9% reaching 
the lowest value. Therefore, we concluded that the 
most important markers were M1 and M2. By the 
same procedure, inputs were sorted in importance 
as follows: M1, M2 → M7, M8, M9 → M5, M6 → 
M3, M4. The recognition rate was conversely 
increasing when M5, M6 and M3, M4 were 
removed. In addition, since pairs of markers 
attached to the same bones were located in the 
front side and back side of the bone, it was 
appropriate to delete pairs of markers at the same 
time. In fact, the number of markers could be 
reduced from 9 to 2 or 5, as pairs of markers 
showed similar movements. 

Lastly, fuzzy rules that characterized table 
tennis skills were extracted. The TAM network 
consists of four layers of hierarchical structure. 
The feature and basic levels represent a mono-
functional mechanism, while the category and 
class levels represent a meta-concept. Using the 
structure of the TAM network, the relationship 
between the mono-functional skill and the meta-
skill could be determined as a fuzzy rule. 

Therefore, the J-th category node was first 
selected, where pjk became the maximum at each 
class node in the data set D+ under the condition 
of equation 21: 

 
(28)                   }.3 ,2 ,1    ,max|{ == kpjJ jkj

 

In addition, we calculated the real value wJi 
of the J-th category node for each input as a 
singleton membership function: 

(29)                         .for       ,1 i
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The set of linkages represented a fuzzy rule 

when we extracted linkages where wJi  
represented the maximum for each player. To 
express fuzzy rules for elite and beginner players, 
five categories with high pjk were extracted for  
 

 
each class. Since a category expresses a rule, these 
categories expressed the rules of the highest five 
pjk’s. In the first rule, wji of the marker on the 
racket in the horizontal direction was high, 
implying that this movement of the racket was 
important. The value of wji of each marker in the 
vertical direction was low, meaning that the 
swing movement was stable and without rough 
wavy movements. In both horizontal and vertical 
directions after the third rule, the value of wji was 
constant and the swing was stable. On the other 
hand, the vertical rise and fall motion was a 
salient feature of beginners’ motion patterns and 
was extracted as the first rule. The horizontal 
movement at the shoulder and the elbow was 
remarkable in the second rule, implying “a 
movement to delay the body”. Figure 4 shows the 
first rule of the elite player and beginner. In this 
Figure, the difference between the elite player and 
the beginner is shown very conspicuously, 
making it easy to formulate table tennis skills as a 
rule. 

The recognition rate achieved with the TAM 
network was better than that obtained with other 
data mining methods. However, the recognition 
rate was still fairly low. Therefore, we applied the 
Adaboost algorithm, which is a kind of an 
ensemble learning model, to the TAM network in 
order to improve its recognition rate. First, a 
dataset was built so that the number of data 
samples of each dataset became approximately 
the same across classes. By adjusting the dataset 
in this way, the number of elite players in TRD of 
the data set D++ became 78, the number of middle 
level players became 73 and the number of 
beginners became 98. On the other hand, as to 
CHD of data set D++, the number of elite players 
and beginners was 54 and 40, respectively. The 
recognition rate of TRD was 61.2%, while the 
recognition rate of CHD was 43.0%. The 
recognition rate was computed as the average 
across 10 repetitions of the experiment. For 
dataset D++, three kinds of data groups were 
constructed as Adaboost was by default defined 
for two-class problems. That is, dataset D++ was 
partitioned into three groups with two classes, i.e., 
D1 which included the beginners and the others, 
D2 that comprised the middle level players and  
the others, and finally D3 composed of the elite 
players and the others. These data sets were 
analyzed by the Adaboost type TAM network  
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with epoch = 3, α = 0.0000001, λ = 0.33. 

The results are summarized in Table 3. The 
average recognition rate was 10 times of the data 
sets. As to TRD of dataset D1, the Adaboost 
algorithm was repeated three times, and 149 data 
were selected as misclassified TRD at the first step 
of the algorithm, and 42 data were selected as 
misclassified TRD at the second step. In the same 
way as to the data set D2, 149 data were selected 
as misclassified TRD in the first step of the 
algorithm, and 44 data were selected as  
misclassified TRD in the second step. As to the  
 

 
data set D3, 149 data were selected as 
misclassified TRD in the first step, and 42 data 
were selected as misclassified TRD in the second 
step. The average recognition rate of the 
Adaboost-type TAM network for TRD improved 
to 73.1%, which was better than 69.3% of the 
original TAM network. As to CHD, the 
recognition rate of Adaboost type TAM network 
increased to 65.5% as the recognition rate of the 
original TAM network was 58.2%. A t-test applied 
to these results showed that Adaboost-type 
training of the TAM network improved accuracy 
over the original TAM network (p = 0.014). 

 

 
 
 
 
 
 

 
 

 
Figure 1 

Position of markers; observed racket swing positions expressed in the (x, y) directions.  
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Figure 2 
Speed of markers; racket swing motion is expressed as the distance across pixels per frame.  

 
 
 

 
 

Figure 3 
 Topographic Attentive Mapping (TAM) network. 
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Figure 4 
Rules of Table Tennis Skill. 

 
 
 
 
 
 
 

Table 1 
Recognition Rates of Revised Data Sets: 

 

Methods 
Recognition Rate (%) 

TRD CHD Average Subtraction 

TAM(D+) 61.2 43.0 52.1 18.2 

TAM(D) 53.7 57.5 55.6 -3.8 

C4.5 98.1 43.3 70.7 54.8 

NBT 100.0 32.8 66.4 67.2 

RF 100.0 25.4 62.7 74.6 
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Table 2 
Sensitivity of Input Variables. 

 
Number of 

Input 
Variables 

Omitted Input Variables and Recognition Rate (%) Minimized 
Recognition Rate 

(%) M1, M2 M3, M4 M5, M6 M7, M8, M9 

18 61.2 61.2 61.2 61.2 61.2 

12-14 42.9 -18.3 57.4 -3.8 51.1 -10.1 48.2 -13.0 42.9 

8-10   45.9 +3.0 48.4 +5.5 41.6 -1.3 41.6 

4   42.9 +1.3 42.0 +0.4   42.0 

Priority Order 1 4 3 2  

 
 
 
 

Table 3 
Recognition Rate by the Adaboost Type TAM Network 

 

Data 
Data 
Sets 

Recognition Rate of 
TAM Network (%) 

Recognition Rate of 
Adaboost Type TAM Network (%) 

M1 M2 M3 Average 
Majority 

Result 

TRD 

D1 67.0 67.0 70.2 75.0 70.7 - 

D2 71.0 71.0 74.0 80.6 75.2 - 
D3 70.0 70.0 72.7 77.5 73.4 - 

Average 69.3 69.3 72.3 77.7 73.1 - 

CHD 

D1 58.5 58.5 64.6 (56.9) 61.6 58.5 

D2 58.0 58.0 69.0 (42.0) 63.5 69.0 
D3 58.0 58.0 69.0 (42.0) 63.5 69.0 

Average 58.2 58.2 67.5 47.0 62.9 65.5 

 
 
 
 
 
 
Discussion 

In this section, we will discuss the 
evaluations of the model. First, the following 
observations with regard to the coordinates of 
positions can be made from Figures 1 and 2: 
• When comparing two elite players, the 

coordinates of positions from M1 to M9 were 
close to each other. Elite players thus 
acquired a fairly stable racket swinging 
motion. 

 

• The M1 to M9 coordinate positions for two of 
the middle-level players were somewhat less 
stable. Overall, the trajectories did not form a 
smooth, oval-shaped forehand drive. 

• When looking at the data of the three 
beginners, the coordinates of positions M1 to 
M9 varied considerably across players. There 
is no single way to characterize the 
beginners’ swing pattern. 

Since the correlation coefficients of the 
horizontal direction (x) of the markers for elite  
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and middle level players were higher than 0.9, it 
can be inferred that the swing movements in the 
horizontal direction of each elite and middle level 
player were very similar. At the same time, the 
correlation coefficient for the vertical direction (y) 
was higher than 0.6, and thus, the movement in 
the vertical direction was also similar. However, 
the correlation coefficients for beginners were less 
than 0.1 in both horizontal (x) and vertical (y) 
directions, and consequently, the movements of 
the beginners were different from each other. The 
recognition accuracy of NBT, RF and C4.5 on the 
training set was very high (Table 1), which can be 
explained as overfitting given the corresponding 
low accuracy on the test data. Since the beginner 
category is hard to clearly define, it is difficult to 
obtain high recognition accuracy using a 
discriminatively trained model. Differences in 
recognition rates across training and test sets were 
very large for NBT, RF and C4.5. This suggests 
again that NBT, RF and C4.5 overfitted the 
training data. On the other hand, differences in 
recognition rates between training and testing sets 
for the TAM(D+) and TAM(D) network were 
rather small. This suggests that the TAM network 
did not overfit the training data. 

Next, the following observations with 
regard to the racket swing motion can be made 
from Figures 1 and 2: 
• Elite players acquired a fairly stable racket 

swinging motion. 
• The trajectories of the middle-level players 

did not form a smooth, oval-shaped forehand 
drive. 

• The shoulder (M1) of the three beginners 
moved more than in elite and middle-level 
players. 

Using a feature selection method, the 
sensitivity of markers was analyzed. We 
concluded that the most important markers were 
M1 and M2, and inputs were sorted in importance 
as follows: M1, M2 → M7, M8, M9 → M5, M6 → 
M3, M4. Based on these results, it could be stated 
that important variables to evaluate player’s 
ability are firstly, 1) the acromioclavicular joint 
and 2) the acromion, and secondly, markers 7 to 9 
located on the racket. These results are consistent 
with the conclusions reached from Figures 1 and 
2. 

Lastly, the following observations with 
regard to the swing speed can be made from  
 

 
Figures 1 and 2: 
• The swing pattern of elite players allows 

them to reach maximum speed at the point of 
contact with the ball. 

• The swing speeds of middle-level players for 
markers M7 and M9 have two peaks and 
appear to be adjusted at the moment of 
impact with the ball. 

• Looking at the swing speed of beginners at 
marker M9, it appears to be reduced just 
before hitting the ball, and subjects seem to 
wait until the ball hits the racket. This is 
sometimes referred to as either “a movement 
to meet a ball with the racket” or “a 
movement to delay the body”. Non-zero 
speeds are recorded at markers M1 and M4, 
even though the speeds at M7 and M9 in the 
same image frames are both zero. 

Figure 4 shows the first rule obtained for 
both an elite player and a beginner. In the first 
rule of the elite players, the weight value of the 
racket in the horizontal direction was high, 
implying that this movement of the racket was 
important. The weight value of each marker in the 
vertical direction was low, meaning that the 
swing movement was stable and without rough 
wavy movements: 

 

0.98. isplayer  elite of degree  then the                    
SMALL are M9(y)  toM1(y) andBIG  are M9(x)  toM5(x) If :player Elite  

 
On the other hand, the vertical rise and 

fall motion was a salient feature of beginners’ 
motion patterns and thus, it was extracted as the 
first rule. 

 

0.94. isbeginner  of degree n the       the          
BIG are M9(y)  toM3(y) and SMALL are M9(x)  toM5(x) If :Beginner   

 
From the TAM network, regarding the 

width of the swing pattern in the horizontal 
direction (x), elite players appear to swing rather 
compactly, whereas beginners make large swings. 
In addition, the difference between the elite player 
and the beginner is shown very conspicuously, 
making it easy to formulate table tennis skills as a 
rule. In particular, when a player hit a ball with 
the racket while forming a straight line with his 
head, shoulder and foot at the center of his body 
to create a stable axis of rotation, the shoulder of 
the beginner did not remain stable. The swings of 
the elbow, wrist and racket were also wide in the  
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vertical direction. The horizontal movement at the 
shoulder and the elbow was remarkable in the 
second rule, implying either “a movement to meet 
a ball with the racket” or “a movement to delay 
the body”. 

Fuzzy rules based on languages can 
extract conjunctive variables with high 
membership values as important factors. As a 
result, with the TAM network, input attributes 
and technique rules were extracted in order to 
classify the skill level of players of table tennis 
from the sensor data. However, we should 
explore the structure of the resulting internal  
 
 

 
model in order to better understand how to 
improve table tennis skills in the future. 

Conclusion 
In this paper, a dataset of forehand 

strokes of table tennis was analyzed with a TAM 
network and a boosted TAM network. In 
addition, fuzzy rules describing the skill of 
forehand strokes were extracted depending on the 
player’s performance level. Future work should 
include exploring the structure of the resulting 
internal model in order to better understand how 
to improve table tennis skills. 
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