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Recent advances in machine learning and computer
vision have led to the development of several sophisti-
cated learning schemes for object recognition by con-
volutional networks. One relatively simple learning
rule, the Winner-Kill-Loser (WKL), was shown to
be efficient at learning higher-order features in the
neocognitron model when used in a written digit clas-
sification task. The WKL rule is one variant of incre-
mental clustering procedures that adapt the number
of cluster components to the input data. The WKL
rule seeks to provide a complete, yet minimally redun-
dant, covering of the input distribution. It is difficult
to apply this approach directly to high-dimensional
spaces since it leads to a dramatic explosion in the
number of clustering components. In this work, a
small generalization of the WKL rule is proposed to
learn from high-dimensional data. We first show that
the learning rule leads mostly to V1-like oriented cells
when applied to natural images, suggesting that it cap-
tures second-order image statistics not unlike variants
of Hebbian learning. We further embed the proposed
learning rule into a convolutional network, specifi-
cally, the Neocognitron, and show its usefulness on
a standard written digit recognition benchmark. Al-
though the new learning rule leads to a small reduc-
tion in overall accuracy, this small reduction is accom-
panied by a major reduction in the number of cod-
ing nodes in the network. This in turn confirms that
by learning statistical regularities rather than cover-
ing an entire input space, it may be possible to incre-
mentally learn and retain most of the useful structure
in the input distribution.

Keywords: winner-kill-loser, incremental learning, natu-
ral image statistics, neocognitron, convolutional network

1. Introduction

Unsupervised learning techniques have been exten-
sively used to learn features for convolutional neural net-
works in order accomplish difficult visual recognition
tasks [1, 2]. Various unsupervised learning schemes have
been proposed to learn good recognition features, includ-
ing collecting a dictionary of features from an image
dataset [3, 4], Hebbian-inspired learning [5], contrastive
divergence [6], Independent Component Analysis [7, 8],
and reconstruction error minimization [9].

Dictionaries of features are built incrementally upon
presentation of input patterns, by inserting new units that
code for regions of the input space not covered by a cur-
rent set of units. Upon insertion, a new unit’s weights are
set to encode the values of the input pattern currently ap-
plied and are fixed throughout the remainder of the learn-
ing phase. Although simple to implement, such incremen-
tal techniques can easily lead to prohibitively large dictio-
naries being learned on typical visual recognition tasks.
Feature sets learned through dictionary building therefore
run the risk of low coding efficiency since a large code is
used to represent the data (cf. [10]).

Techniques based on Hebbian learning instead typi-
cally assume a fixed number of units whose weights are
gradually learned upon repeated presentation of inputs
with the product of pre- and post-synaptic activity. When
used in conjunction with a suitable normalization opera-
tor and competitive interactions among feature units, the
learned synaptic kernels correspond to either independent
components [11] or principal components [12]. Hebbian
learning can actually be related to reconstruction error
minimization, in which synaptic weights are learned in
order to minimize an objective function that measures the
distortion between the input and the backprojected (i.e.
through the synaptic matrix transpose) output [13]. One
variation of Hebbian learning – the trace rule – uses low-
pass filtered post-synaptic output with the hope of achiev-
ing spatial invariance through learning from continuously
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varying input [5, 14–16]. Trace rule learning is sometimes
equivalent to Slow Feature Analysis [17], in which the
goal is to promote learning of features that capture slow
variations in the input for purpose of invariance [18, 19].
Despite its simplicity and the possibly limiting influence
of the linearity assumption of Hebbian learning, state-
of-the-art results on standard image datasets have been
achieved with this framework. Nevertheless, model selec-
tion remains an issue, such that the only viable strategy
to obtain good results may be to rely on high throughput
parameter search [5].

Hebbian-based, competitive learning has also been
used in conjunction with a dictionary-building strategy in
the Neocognitron model [20]. According to this scheme,
existing units compete upon presentation of inputs, and
the weights of the winning unit are modified according to
a variant of Hebbian learning. New units are added when-
ever none of the existing units is sufficiently activated by a
given training input. This method has shown good results
in particular on digit recognition datasets.

Contrastive divergence has also been used to learn fea-
tures for convolutional networks [6]. Learning with con-
trastive divergence roughly follows the gradient of the
log-likelihood [21]. The results obtained with that ap-
proach on standard image datasets have been compara-
ble to that obtained with other state-of-the art approaches.
Here again, the number of units is fixed in advance and
model selection is an issue. Learning with Independent
Component Analysis (ICA) is somewhat related to the
maximum likelihood approach in that both can be traced
back to optimizing a log-likelihood criterion [22], al-
though ICA is intrinsically tied to the use of a sparsity cri-
terion. Results obtained with ICA have been in line with
that of other approaches on standard image datasets [7, 8].

Instead of performing gradient ascent on the log-
likelihood function, another learning strategy is to per-
form gradient descent on the input reconstruction error
in an autoencoder network [23]. Minimizing the recon-
struction error can be shown to be equivalent to maximiz-
ing a lower bound on the mutual information between the
input and output layers of the autoencoder [24]. Recent
energy-based methods for learning convolutional autoen-
coders have yielded some of the best performing methods
on standard object recognition benchmarks [1, 9].

Within the above approaches, the simplest learning
rules are attractive for at least two reasons. First, sim-
ple learning mechanisms are more likely to be suitable
for hardware acceleration, as shown by the fact that state-
of-the-art hardware implementations of convolutional net-
works currently have to perform learning offline [25].
Second, learning mechanisms that rely purely on local
computations and that do not require sophisticated numer-
ical procedures are generally more adequate as explana-
tions of learning in the biological brain [26].

The first issue addressed in the current paper is whether
one such simple learning rule, the Winner-Kill-Loser
(WKL), can be used to learn oriented edge detectors sim-
ilar to the receptive fields of simple cells in cortical area
V1. Learning oriented edge detectors is a valuable goal as

these may be considered as the building blocks for more
sophisticated visual processing. Based on our investiga-
tions into the WKL rule, we modify the original rule with
the intent to capture local statistical regularities in im-
ages, and test whether the proposed modification yields
any benefits in a digit recognition task. If the modified
rule better captures spatial information in the input im-
age distribution, this should be observable as either an
improvement in overall classification accuracy and/or a
reduction in the number of units needed to reach that ac-
curacy. As shown in the simulations reported in section 5,
although our revised WKL rule does not improve accu-
racy over the original learning rule – in fact, it reduces
it slightly – the number of units needed to reach that ac-
curacy is drastically reduced. Most of the results on the
theoretical properties of WKL and the natural image sim-
ulations have already appeared in [27], results on the digit
classification task are presented here for the first time.

2. The WKL Learning Rule

The WKL rule was proposed in [20] for purpose of
learning higher-order combinations of features in the neo-
cognitron model for written digit classification [28]. The
WKL rule can be described as follows. Let x be an input
pattern, the activity of unit j is represented by a similarity
function s j = f (w j,x), where w j is the unit’s synaptic ker-
nel. The similarity function f is typically implemented as
a normalized dot product:

s j =
w j · x

||w j||||x|| , . . . . . . . . . . . (1)

where || · || is the L2 norm. Common alternatives to Eq. (1)
include radial-basis functions of the form:

s j = γe−β ||x−w j ||2 , . . . . . . . . . . (2)

which, given certain assumptions on the norm of input
vector x and weight vector w j, can be shown to be nearly
equivalent to Eq. (1) [29], a relationship that holds empiri-
cally [30]. Let i be the index of the most active unit within
a group of units tuned to different features. Given a cer-
tain activity threshold θ , and assuming si>θ , the weight
update for the winning unit is defined as:

Δwi = λ x, . . . . . . . . . . . . . (3)

for a given learning rate λ . The threshold θ may be seen
as defining a neighborhood in the input space, located
around the center wi, for which patterns will strongly ac-
tivate unit i. Reference [20] considered only the case of
λ = 1, although here we use λ = 0.05 for all simulations.
The weights for all inactive units (i.e. units whose activ-
ity is less than the threshold) are left unchanged. If no
unit has an activity level beyond θ , a new node is cre-
ated whose center is set to the input pattern x. Up to
this point, the WKL is identical to incremental Winner-
Take-All learning [31, 32]. However, the WKL includes
an additional step whereby units whose activity is higher
than the threshold but is less than that of the winner are
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removed from the network. WKL learning is thus a vari-
ant of incremental, competitive clustering techniques that
include the leader algorithm [33] and adaptive resonance
theory [34], and differs from these by the use of a fast
decremental step.

The purpose of the decremental step is to reduce re-
dundancy in coding while allowing for a complete cover-
ing of the input space with fewer nodes than in traditional
WTA learning, leading to a form of sparse coding of the
input [35]. Simulations in the neocognitron have shown
that the WKL compares favorably at least on a written
digit recognition task [20].

Still, one issue with incremental learning rules such as
WKL is the potentially large number of nodes needed to
cover the input space. With WKL learning, this problem
appears in two different ways. First, the removal of ex-
isting nodes can be seen to lead to gaps in the covering,
at least when using a spherical cluster neighborhood as
in Eq. (1). Second, the sheer size of the input space may
be so high as to require a prohibitive number of nodes to
cover its volume.

The first type of problem is not really of concern, as
gaps between closely connected neighborhoods can be
dealt with using simple strategies [36]. Furthermore, the
general influence of these gaps can be expected to de-
crease as the dimensionality of the input space increases.
That this is the case can be seen by considering the ratio
of the volumes of the gaps to that of the nodes’ neighbor-
hood. For any dimension n, the spherical neighborhoods
of three adjacent nodes form an equilateral triangle on a
hyperplane. Let r be the radius of those spheres. Within
that hyperplane, the three spheres define another one that
covers approximately the projection, onto the hyperplane,
of the gap at their intersections. The radius of that sphere
is given by:

q =
r

cos
π
6

− r, . . . . . . . . . . . . (4)

and its volume is:

Vnqn, . . . . . . . . . . . . . . . . (5)

where Vn is the volume of a hypersphere of radius 1 [37].
The ratio of the volumes of the gap to that of the nodes’
neighborhoods is then:

Vnqn

Vnrn =

⎛
⎜⎝ r

cos
π
6

− r

⎞
⎟⎠

n

rn =

⎛
⎜⎝ 1

cos
π
6

−1

⎞
⎟⎠

n

. (6)

It is easy to see that, as n → ∞, this ratio converges to
0. Thus, as dimension increases, gaps between connected
neighborhoods should have less impact on the covering.
The above result bears similarity with the vanishing ra-
tio of the volume of a hypersphere to that of an enclosing
hypercube, which is typically invoked in describing the
curse of dimensionality [38]. Fig. 1(b) shows the result of
Monte-Carlo simulations that confirm this intuition. Un-

Fig. 1. WKL learning and input space dimensionality.
WKL simulations were run on randomly sampled natural
image patches of increasing dimensionality (from 3× 3 to
17× 17). a) The number of nodes learned as a function of
the number of learning iterations clearly increases for high-
dimensional spaces but remains roughly constant at low di-
mensions. b) The resulting input space covering – as mea-
sured by the percent test data points not included in the cov-
ering – correspondingly improves for high-dimensional, but
not low-dimension spaces.

like the gaps between adjacent neighborhoods, increasing
the input space dimensionality actually worsens the sec-
ond type of covering problem (Fig. 1(a)).

From a computational perspective, incremental com-
petitive learning procedures thus seem inadequate to learn
oriented receptive fields from the (high-dimensional)
space of natural images. Fig. 2 shows an example of the
kind of receptive fields learned by applying the WKL rule
to natural images: few cells seem to display any form of
orientation selectivity. Rather, most cells appear to code
for some form of surface texture.

Incremental learning procedures thus seem better
suited to learn higher-order features formed by combina-
tions of handcrafted oriented edge detectors like Gabor
filters or Difference-of-Gaussians [4, 20].

3. Probabilistic WKL

The results of the previous section point out to the dif-
ficulty inherent in any attempt to find a complete cover-
age of the input space in the case of high-dimensional in-
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Fig. 2. Example receptive fields learned with WKL learning
applied to natural image data. Most cells do not develop a
pattern of orientation selectivity.

put vectors. Motivated by these results, we introduce a
small generalization of the WKL learning rule that allows
a useful form of incremental learning in high-dimensional
space. In particular, rather than attempting to cover the
entire input space, the proposed learning rule empha-
sizes learning regularities in the data that closely resemble
second-order statistics [39].

The last reference to second-order statistics finds its
justification in the following argument. Given that synap-
tic weights are only modified for the winning unit, and
that the winning unit’s activation is guaranteed to be
above a nonnegative threshold, Eq. (3) can be approxi-
mated as follows:

Δwi = λ xT ≈ λ sixT . . . . . . . . . . (7)

Computing the expectation over many input presenta-
tions, assuming the winning unit is not killed at any point
during training, the expected weight change is then given
by:

EΔwi ≈ λ EsixT = λ E
w j · x · xT

||w j||||x|| , . . . . (8)

where E is the expectation operator computed over the
data distribution. It can be inferred, from a classical re-
sult [12] using a learning Equation very similar to Eq. (8),
that granted certain assumptions on the learning rate, the
weight vector w j should converge to the first eigenvec-
tor of the Gram Matrix E

[
xxT

]
, which is a second order

quantity. Although this is not analytically proven here –
one would have to ensure convergence properties in view
of the possibility of node removal and of the use of an
explicit normalization operator stemming from Eq. (1) in-
stead of a weight decay term – the results of Fig. 3 below

Fig. 3. Comparison of the number of nodes learned with the
original WKL and the probabilistic WKL (pWKL) during
training. The number of nodes learned with pWKL is clearly
less than with the original learning rule.

suggest that this statement is at least approximately cor-
rect.

In order to capture statistical regularities, our first mod-
ification to the original WKL rule consists in making the
removal of a node inversely proportional to the number
of times (ni) it has won competition in the past. Let Pi
denote the probability of removing node i given that its
activity is above threshold but below that of the winning
neuron. The model presented in [20] was restricted to the
case where Pi = 1. What we propose is thus to use instead

Pi =
1
ni

. The rationale for such a mechanism is that a node

that has won many times in the past is likely to cover an
important part of the input space and should thus be kept.

The second modification to the WKL rule consists in
making new node insertion inversely proportional to the
total number of nodes (N). Let Pn denote the probabil-
ity of inserting a new node given that no existing node
has an activity level beyond the threshold θ . The model
presented in [20] was restricted to the case where Pn = 1,
meaning that a new node is certain to be introduced. What

we suggest instead is to use Pn =
1

Nα , where alpha is a
user-specified parameter. If no new node is inserted, the
input pattern is nevertheless learned by the most active
unit in the network, despite that its activity is less than θ .
This second modification allows the network to maintain
a relatively small number of nodes despite the potentially
large dimension of the input space while maintaining the
incremental nature of the original learning rule. Making
node insertion inversely proportional to the number of ex-
isting nodes is analogous to the use of a Dirichlet prior
in non-parametric Bayesian estimation [40], but without
the complex sampling procedures required for statistical
consistency [41].

Crucially, the use of a soft criterion in the WKL to de-
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Fig. 4. Probabilistic WKL learning and input space dimen-
sionality. a) Although approximately only half the number
of patches was sampled in these simulations compared to the
simulations of Fig. 1, a substantial reduction in the number
of nodes is nevertheless apparent. b) The resulting covering,
while much improved in low dimensions, remains poor in
higher dimensions.

termine new node insertion allows the number of nodes
to adapt to the input distribution, unlike previous learn-
ing methods which considered a fixed number of units
(e.g. [11, 26, 42, 43]).

Figure 4 shows that running the probabilistic WKL
rule (pWKL) over a smaller version of the Monte-Carlo
task of Fig. 1 leads to (a) a reduced number of units, and
(b) a better coverage of the input space in low dimensions.
Approximately half the number of patches was sampled
per iteration compared to Fig. 1. Hence, it is useful to
compare the number of nodes at iteration t in Fig. 4 to the

corresponding number at time
t
2

in Fig. 1. For example,
comparing the number of units between pWKL at time
t = 2 and WKL at time t = 1 yields 60 Vs 10,000.

Table 1 summarizes the pWKL rule. The only differ-
ences with the original WKL rule are that in the latter
case, p = 1 in steps 3b and 4, and there is no step 5.

4. Learning V1-Like Receptive Fields

In this section we demonstrate that the proposed gener-
alization of the WKL rule is capable of learning oriented
edge receptive fields from natural images. The training
procedure is analogous to the ones used in typical V1

Table 1. WKL and probabilistic WKL.

learning simulations. At each iteration, a 15-by-15 im-
age patch is randomly gathered from a natural image and
input to the network. For our simulations we use natural
images gathered from a camera attached to the head of a
cat as it wanders in a natural environment [44]. As in [45],
raw pixel input is first pre-processed with a difference-of-
Gaussians filter whose inner and outer spreads are given
by 0.875 and 1.4, respectively. Cell activities are then
computed according to Eq. (1) and learning proceeds as
described above with an additional normalization of the
input x in Eq. (3) which further reduces the dimensional-
ity of the input space, for a maximum number of 100,000
iterations. The threshold parameter is fixed at θ = 0.65,
and α = 1.4.

Figure 3 shows the number of nodes learned as a func-
tion of the training iteration when using either the origi-
nal WKL (thick black line) or its proposed generalization
(pWKL; thin gray line). The number of nodes learned
with the probabilistic WKL is clearly inferior – by a few
orders of magnitude – to the number learned with the orig-
inal WKL. The network also appears to be approaching
stability, although simulations run with an even higher
number of training patterns should be conducted to con-
firm whether stability is achieved.

Figure 5 shows the first 169 receptive fields (out of
a total of 181) learned with the probabilistic WKL. In
comparison to the patterns learned with the original WKL
(Fig. 2), the probabilistic WKL appears to capture impor-
tant regularities – mostly in the form of oriented edges –
in the natural image input space.

In order to quantify how well the learned receptive
fields approximate the near uniform distribution of edges
in natural scenes, Gabor patches were fit via least-squares,
and the resulting phase/frequency estimates visually in-
spected for correctness. In 7% of cases the fitting pro-
cedure failed to converge despite that a clear orientated
receptive field had been learned. In 4% of cases, the
receptive fields obtained lacked a clear orientation, and
instead resembled the kind of center-surround receptive
fields found in undirected V1 cells. Finally, in 14% of
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Fig. 5. V1-like receptive fields learned with pWKL. Ori-
entation selectivity can easily be observed in a majority of
units.

Fig. 6. Log-polar representation of the distribution of phase
and frequency of filters learned with pWKL. Phase is indi-
cated by the angle on the polar plot. Log-frequency is indi-
cated by the radial circles. All phases are adequately repre-
sented, with a particular emphasis on vertical orientations.

cases the learning algorithm failed to yield a receptive
field with a clearly identifiable structure.

The estimates obtained for all remaining receptive
fields are plotted on the log-polar plane in Fig. 6.

As Fig. 6 shows, the learning algorithm is able to suc-
cessfully learn edge filters in all orientations. The learn-
ing rule is not as successful at spanning the space of fre-
quencies. More investigations are needed to determine
whether this limitation should be ascribed to the learning
rule itself or to the pre-processing used here (in particular,
to the spatially frequencies of the difference-of-Gaussians
filter).

5. Optical Character Recognition Experiments

In this section we embed the pWKL rule in the Neocog-
nitron model [20] and illustrate the resulting model’s per-
formance on the ETL1 database.

5.1. ETL1 Database
The ETL1 dataset is a subset of the larger ETL hand-

written digits database collected by the Electrotechnical
Laboratory – now the National Institute of Advanced In-
dustrial Science and Technology – between 1973 and
1984. The ETL database contains approximately 1.2 mil-
lion, cropped, handwritten characters and may be consid-
ered as an alternative to the MNIST database, the latter
containing approximately 70,000 character [46]. Each
character is encoded into a 65× 65 grayscale input ma-
trix. We use only the ETL1 subset of the full database,
which contains 5,000 characters, since that is what earlier
simulations of the Neocognitron with the WKL rule used
and we wish to provide a fair comparison of these with
our candidate pWKL rule.

5.2. Neocognitron
The Neocognitron model [28] is a hierarchical neural

network that has been widely used in pattern recogni-
tion tasks, especially in the context of optical character
recognition. The Neocognitron is composed of a num-
ber of layers, where each layer contains two types of cells
called S-cells and C-cells, respectively, in analogy to the
simple and complex cells found in primary visual cor-
tex [47]. Although multiple refinements of the S- and
C- cells have been formulated since the Neocognitron’s
inception, their main functions may be described as com-
puting correlation filters and pooling operations, respec-
tively. In order to sparsify the output of each model layer,
an additional step of competition is implemented across
C-cells at different spatial locations. The Neocognitron
model was probably the first model to show how layered
stages of filtering, pooling, in conjunction with unsuper-
vised learning, could lead to a 2D pattern classifier capa-
ble of some spatial invariance. These features are shared
with later model such as convolutional networks [1], net-
works based on the HMAX operator [4] as well as other
similar architectures [5]. In the convolutional network lit-
erature, the operations of filtering, pooling and compe-
tition tend to be referred to as convolution, pooling and
normalization, respectively.

The simulations we present here build off of a recent
variant of the Neocognitron which contains both divisive
and subtractive normalization at the level of the S-cells
(interested readers should consult [36] for more details
about the model architecture).

5.3. Simulation Procedure
Simulations were run on a Linux cluster of five Sun

Ultra-20-M2 workstations with AMD Opteron DC1210
1.4 GHz, 2GB RAM, connected over 1GB Ethernet, and
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running Hadoop 1.0.3. The original C++ code used
in [36] was ported so as to be easily used in Hadoop
streaming by changing file I/O to read and write directly
from/to HDFS. The simulations reported here only vary
a single parameter – namely, the sparseness parameter α
in the pWKL equation – and measure its effect on overall
accuracy. The sparseness parameter α was varied within
the interval [0,1] at increments of 0.2, yielding a total of
six parameter configurations. Note that when α = 0, the
pWKL is actually equivalent to the original WKL rule,
which allows us to compare the effect of increased sparse-
ness against the base implementation. Note that we also
constrain α to be the same across model layers, which can
be conceived perhaps as the most stringent test of the use
of a sparseness criterion in the Neocognitron. Indeed, it
is possible that sparseness may be better used at different
levels in the various layers of the Neocognitron, a possi-
bility that we do not address here.

Hadoop allows us to speed-up simulations through
mapReduce. In the map step, each compute node in
the cluster is assigned a specific parameter configuration,
whereas the reduce step only accumulates the computed
accuracy values across parameter configurations. Train-
ing was performed separately for each layer over 5000 it-
erations, where each iteration consisted in the presenta-
tion of one randomly selected pattern from the ETL1 sub-
set. Overall classification accuracy was computed over a
subset of 1,000 patterns.

5.4. Results
We simulated the Neocognitron model with pWKL for

various values of sparseness parameter α . Fig. 7 shows
the accuracy computed as a function of α , and as a func-
tion of the number of training iterations.

From Fig. 7, it is clear that the accuracy on the test set
reaches a somewhat stable point already after presentation
of only 1000 training patterns, for any value of the sparse-
ness parameter α . Increasing sparseness uniformly across
layers of the model actually reduces accuracy slightly by
about 3% (when α = 1).

On the other hand, Fig. 8 shows that this comes with a
substantial reduction in the number of nodes.

As expected, the higher α is, the fewer units remain
in the model. Perhaps what is most surprising, however,
is that the 3% decrease in accuracy seen when increasing
sparseness uniformly from 0 (which is equivalent to the
original WKL) to 1, is accompanied by a 64% reduction
in the number of nodes in the network. Hence, it appears
that more than half the nodes in the original Neocognitron
(i.e. in the Neocognitron trained with WKL) contribute
little to nothing to the classification accuracy. One useful
future direction of research would be to devise a measure
of information – in a spirit somewhat similar to Akaike’s
information criterion [48] – for non-Bayesian models like
the Neocognitron in order to quantitatively assess the rel-
ative importance of classification accuracy as a function
of the number of network nodes.

Another interesting feature of Fig. 8 is that the decrease
in number of nodes varies across layers, despite that the

Fig. 7. Classification accuracy over ETL1 as a function of α
and of the number of training iterations. Each curve shows
the accuracy for a given value of the sparseness parameter
α ∈ {0,0.2,0.4,0.6,0.8,1.0}. Accuracy decreases propor-
tionally to the value of α from approximately 99% to 96%.

Fig. 8. Number of units per layer, as a function of sparse-
ness parameter α . As expected, increasingα proportionally
reduces the number of coding units learned in the model.

same α parameter was used. In particular, as α increases
the number of nodes kept appears to converge such that
it is higher for later layers (i.e. layer 3 has more nodes
than layer 2, and layer 4 has more nodes than layer 3).
This could indicate an intrinsic difference in the number
of spheres needed for a full volume covering as dimen-
sionality expands from layer 2 to 4, since the input space
dimension does indeed increase as one goes up in the lay-
ers of the network.

6. Discussion

Our primary objective in this article is to see whether
a simple incremental learning rule such as WKL can
be used to learn statistical regularities in the high-
dimensional space induced by natural images, and
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whether it can be used in the context of classification
tasks. Upon presentation of natural images, in its original
version, the WKL rule leads to an explosion in the number
of learned filters (Fig. 3). In addition, most learned filters
do not capture essential regularities in the data (Fig. 2).
On the other hand, the WKL rule learns these regulari-
ties when generalized so as to make a given node’s re-
moval probability inversely proportional to the number of
times it has won competition, and so that new node inser-
tion is inversely proportional to the total number of nodes.
The WKL rule learns not only strongly oriented receptive
fields, but also, to a lesser extent, undirected receptive
fields. The latter resemble the zero-phase (ZCA) filters
of [42], and their emergence among a wider group of ori-
ented cells is consistent with the fact that non-oriented,
black-white cells are also present in cortical area V1 [49].
Fig. 5 reveals that learned undirected cells were of the
off-center on-surround type exclusively. Future work is
needed to understand why this type of cells was learned
over on-center off-surround cells.

Both proposed generalizations require minimal
changes to the original WKL. In particular, the quantity
Pi requires only evaluating local computations. The
quantity Pn requires knowing the total number of nodes
N which, despite being a global quantity, remains simple
to compute. Although this question is beyond the scope
of this article, it is possible that such a quantity would be
computed implicitly in the brain by considering that the
number of neurons in a given cortical volume remains
roughly constant.

In this work, the probabilistic terms Pi and Pn were kept
as simple as possible. It remains a possibility, however,
that the postulated forms limit the range of learned fea-
tures. For example, using a heavy-tailed function for Pn
might lead to more useful features being learned. Con-
versely, stable learning may be impaired due to the fact
that nodes are initially prone to removal due to the high
value of Pi.

Although the space of orientations is appropriately cov-
ered by the learning rule (Fig. 6), variations in frequency
do not seem to be well handled by the learning rule.
Such a tight clustering of learned frequencies has already
been observed when using either Independent Component
Analysis (ICA) or sparse coding techniques [50]. It is not
clear at present why such a tight clustering would occur.

Simulations show that the proposed learning rule can
learn orientation-selective receptive fields – akin to the
kinds of receptive fields found in area V1 – as well as per-
form near the same level of accuracy as the WKL rule on
a digit recognition benchmark while drastically reducing
the number of units needed to reach that level of perfor-
mance. It is possible that the pWKL rule shows no ac-
curacy improvement over the WKL rule since the latter’s
performance on the ETL1 dataset is already near perfect
(>99%). As suggested by the results of Figs. 3 and 5,
accuracy improvements may be more noticeable on tasks
whose input space is of higher dimension, such as tasks
designed to study general object recognition in natural im-
ages [51, 52].

7. Conclusion

In this article, we generalize the WKL rule to learn
oriented receptive fields from natural image data and
test whether it can lead to improvements on a standard
recognition benchmark dataset. Our generalization re-
tains some of the essential benefits of the original WKL
– namely its simplicity and biological plausibility – while
being able to deal with a high-dimensional input space.
The main drawback of the proposed method is that it does
not lead to a dense covering of frequency space, and that
it does not show any clear improvements in terms of clas-
sification accuracy, at least on the ETL1 dataset.

Given that the present results hint to the possibility of
learning incrementally the second-order statistics of a an
input distribution, three questions that naturally arise and
could be addressed in later work include characterizing
exactly the convergence properties of weight vectors be-
yond the simple analysis of Eqs. (7) and (8), deriving a
concise energy function for networks of pWKL units [16],
and using the pWKL rule to learn non-stationary distribu-
tions [53].
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