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In the conventional fuzzy reasoning there is a tuning problem which requires slightly
adjusting the inference rules so that the result of the fuzzy reasoning is same as the observed
data. In other words, the shape of fuzzy numbers is determined and fuzzy reasoning rules
are adjusted in order to minimize a sum of squares of the error between the result of fuzzy
reasoning for input data and output data. On the other hand, we proposed neural network
driven fuzzy reasoning which does not require this tuning procedure. In the neural network
driven fuzzy reasoming a fuzzy set in the antecedent part and an input and output
relationship in the consequent part can be identified by using back-propagating error
learning of a neural network. In this paper an algorithm for constructing inference rules by
neural network driven fuzzy reasoning is explained, and the validity of the algorithm is
shown by constructing the operation rules of a tester who flings the pendulum of an inverted
pendulum system.

Keywords: fuzzy reasoning, tuning problem, neural network, back-propagating error learning,
membership function

1. INTRODUCTION

Fuzzy reasoning has recently been applied to the control field, and there are many application examples
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[1] of fuzzy control. In fuzzy reasoning vague language can be described in the inference rules in the
"If...Then..." form [2,3]. Since the inference rules can be described in the natural language, the
designers of control models can design a system model easily. However, fuzzy reasoning has a tuning
problem [4]. Tuning is a procedure which slightly adjusts the reasoning process in order to obtain an
optimal result from fuzzy reasoning. In other words, the shape of fuzzy numbers, antecedent part in the
fuzzy inference, and the label of fuzzy variables in the consequent part are modified in order to
minimize the difference between the result of reasoning for input data and the output data.

As a method for solving the tuning problem, we proposed neural network driven fuzzy reasoning
[7,8] which constructs inference rules by a neural network [5,6] learning function. The neural network
driven fuzzy reasoning is a method which has a back-propagating error learning model [9] that express
fuzzy sets in the antecedent part and has another back-propagating error learning models. that express
the input and output relationship in the consequent part. In this paper an algorithm for constructing
inference rules by neural network driven fuzzy reasoning is explained, and the validity of the algorithm
is confirmed by an experiment using an inverted pendulum system. In the experiment a tester flings a
pendulum up from a down position using the device. By using the algorithm of neural network driven
fuzzy reasoning, fuzzy rules are determined from the data measured by the tester. The constructed
inference rules can certainly fling up the pendulum. The one cycle reasoning time for the fling-up
control is approximately 15 msec.

Since neural network driven fuzzy reasoning can determine a fuzzy set in the antecedent part and
the input and output relationship in the consequent part by using the learning function of a neural
network from the input and output data without adding a slight adjustment to the inference rules, it is
considered as a method that solves the tuning problem in fuzzy reasoning.

2. BACK-PROPAGATING ERROR LEARNING

Back-propagating error learning is a learning algorithm for a network consisting of units and combined
bodies between units. It can determine the structure of a network which can minimize the error between
an output value and the estimate when input and output data are given to the network.

Figure 1 shows a hierarchical network consisting of M layers. The fist layer is called an input
layer, the layer in the M order is called an output layer, and the other layers are called intermediate

1

Fig. 1. M layer back-propagating error learning model.
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layers. The neural network having M layers in the back-propagating error learning model used in this
paper is defined as follows.

1) The M layered back-propagating error learning model is a models having one input layer, M—2
layers of intermediate layers, and one output layer.

2) The input layer and intermediate layers have a constant unit which outputs a constant, 1. The
constant unit is not connected to the units in the lower layers but is connected to the upper layers.

3)  The units in the adjoining layers, except for constant units, are connected to each other. There are
no connections within same layer or between separate layers.

The following is the input and output relationship of each unit. Now, the units in the g order of the
layer in the p order are expressed as u(p, g). The total sum of the input of u(p, g) is expressed as x’,
and the output is expressed as y,7. The output, y, =1, of the unit, u(p—1, k), in the & order in the layer
in the p — 1 order becomes the input for the unit, u(p, g), by multiplying it by the degree, &, 7~'?, of
the connection between units called a synapse connection. The input and output relationship of u(p,q)
is expressed as follows.

¥ =r (%) @)
10— —
' T 1+exp(—x) 3)

where, 67 is the threshold value of u(p, ¢), and formula (3) is called a sigmoid function [5]. It is also
assumed that the layer in the p — 1 order has w pieces of units.

Next, the learning algorithm of a back-propagating error learning model is explained.

Now, input and output data (O, I)), i = 1, 2, ..., N are given. The optimal output value of the unit
in the g order in the output layer for input /; is defined as O, and the estimate of O, by the learning
algorithm is defined as EO,;. During the learning of the output layer a synapse connection o which
minimizes s sum of squares, E;, of the error between the output, O, and the estimate, EQ,;, is obtained.

E=(Z(0u—EO0q4)? /2 @
E =3 ®)

The value of E,; in formula (4) is minimized in order to minimize E.

dE;, _ _ _EO. :
aEC,, ~ ~ (On= B0 ®)

When considering the case where the layer in the p order is the output layer, EO, = y/ is defined.
Therefore, the effect, dEO,/da, P~'#, on the slight change in the degree of connection, o 7~'?, is
defined as follows from formulas (1) and (2).

dEQ,, dvef
ddk_ qp‘q-t P = dﬂlg. qul‘ , =f' (quP) Vi -t (7)
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The effect, dE/do, /~'7 on the square error, E,, of the degree of connection, o 7', is defined as
follows.

dE, __dE, dEO,,
dar. > 77 dEO, X das, qux, 7 =0t (¢))
where,
%= f (xqul") (Oq{ —qui) )

On the other hand, when the layer in the p order is not the output layer, the following is defined
by considering the output from unit u(p, g) to unit u(p + 1, g).

dE, __
Ty, 7 OO (10)
where,
o= (x,0) Tovay, ;" (11)

In back-propagating error learning, all the é values in the direction where the value of E; in formula
(4) is decreasing can be calculated by constantly applying formulas (9) and (11) to the output through
the input in the multi-layered structure of back-propagating error learning models.

The changing quantity of the synapse connection, o, ,, for decreasing E; can be calculated as
follows.

A an =70 (12)

where, 7 is a constant.

In this way, the value of the synapse connection is sequentially propagated from the output layer
to input layer for decreasing the error between the true value and the estimate. Therefore, it is called
back-propagating error learning.

Here, the input and output relationship of a back-propagating error learning model is expressed
as follows. The input is defined as x = (x;, x,, ..., X,), and the output is defined as y = (y,, ¥,, ..., ¥)-

y=NN (x) 13)

The M layer of the scale of a model is expressed as M layers [u, X u, X ... X u,]. u, is the number of
units in the input layer. &, = 1, 2, ...,M—1 are the number of units in the intermediate layers. u,, is the
number of units in the output layer. For example, Figure 1 consists of four layers [3 X 2 x 2 X 2].

3. NEURAL NETWORK DRIVEN FUZZY REASONING

A tuning problem exists in fuzzy reasoning [4]. Now, it is assumed that the input and output data, (y,
x) = Vi, Xn» Xg» --» X, i =1, 2, ..., N, are obtained using input variables, x,, x,, ..., X,, and output
variable, y. The tuning problem is to modify the shape and number of fuzzy numbers and the labels of
fuzzy variables in the antecedent and consequent parts in order to minimize a sum of squares of the error
between the result of fuzzy reasoning and output data. Neural network driven fuzzy reasoning which
performs fuzzy reasoning by driving the learning function of the neural network is one method for
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solving this tuning problem. The neural network driven fuzzy reasoning is constructed based on fuzzy
modeling [10]. The fuzzy modeling is a method which describes the dynamic property of an control
object in the inference rules in the form, "If... then...," used in fuzzy control. The consequent part is
described using linear formulas. The neural network driven fuzzy reasoning determines a fuzzy set in
the antecedent part by using the learning function of a neural network and determines inference rules
by considering the consequent part as a non-linear input and output relationship.

Here, an algorithm which constructs the basic idea of the neura! network driven fuzzy reasoning
and inference rules is explained. Now, the inference rules of the following modeling are considered.

R :IF xis Fa and %, is Fu

THEN Nh=aotanxn tax
R,,IF x is Fa and x, is Fsc

THEN y;=an+anx +anx (14)
R, IF x is Fsc

THEN yy=a3+ a1 %

where, x, and x, are input variables. y,, y,, and y, are output variables. ay, a,;, ay,..., a3 are
parameters . Fy; and Fb, are fuzzy numbers that express "SL: small,"” and "BG: big" respectively. In
R, F, = Fgq X Fg is defined, where x denotes topological product. Since the antecedent part of R,
means that "x, is small," and "x, is small," the fuzzy set, F,, can be constructed in the partial space of
input, R,, as shown in Figure 2. The fuzzy sets in R, and R, can be constructed as well. In Figure 2,
fuzzy sets are constructed on F,, F, and F;, respectively. Since each fuzzy sets are overlapped with other
ones, the overlapped-area is described by hatched lines. Input space is divided into the number of
inference rules, and sub-space are constructed by divided area. A fuzzy set in the antecedent part is
constructed on each sub-space. Input data are scattered in the input space. Now, a case where input data
are divided into several groups, C,, s = 1, 2, ..., r, is considered. A fuzzy set in the antecedent part
is constructed by using the divided input data by back-propagating error learning. Here, it is assumed
that the degree, W,,, where input data x; belongs to division C, is given as 0 or 1 as follows.

1: In the case where x, belongs to C,
0: In the case where x; does not belong to C, 15)

A\ =

Xy 0 X1
Fig. 2. Input space partition by fuzzy reasoning.
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The given input data x; satisfies W, = 1 only for certain C;, and for the other C;, j = 1, 2,..., 1,
Jj#Es, = 0. Since the degree W, shows whether input data x; belongs to each division C; or not, it
can be sa1d that it indicates a possxbxlity that input data return to each C,. In this paper, the degree of
possibility for input data is obtained as the real number of EW,, € [0, 1] and not as the integer of {0,
1} by learning using a back-propagating error learning model Here EW, is the degree of possibility
for the input data obtained by learning using a back-propagating error learmng model.

Now, the degree of possibility tha: the given input data, x; = (x;, X, ..., X;,) belong to C; is
expressed using the symbol, W, = (W, Wy, ..., W, ..., W) = (0, 0, ..., 1, ..., 0). The back-
propagating error learning is performed by assigning x; = (x;, X, ..., X;,) in the input layers and by
assigning (W;,, Wy, ..., Wy, ..., W,,) inthe output layers. After back-propagating error learning, the data
except for the given input data are placed in the input layers of the back-propagating error learning
model. The obtained output value is not the integer of {0, 1} but the real number of EW; € [0, 1].

EW = NN, .(x), v =12..k 16
= (EW,, EW,, JEW,, ... EW,) (16)
where, NN,,, shows a back-propagating error learning model for determining a fuzzy set in the
antecedent part, and EW, shows r pieces of output values of NN,,, for input data x,.

In formuia (15) the degree of a possibility, W, for the given data shows a possibility that it belongs
to C, using the integer of {0, 1}. On the other hand, the possibility EW,, for new data except for the
given input data is obtained in a real number within the division, [0, 1]. The membership value u./(x)
of fuzzy set F, for the antecedent part of the inference rule in the s order is defined as follows.

Be(x) = EW, i=12,..k s =12,..,r a7

The formula 17 defines a possibility [11] that input data belong to inference rules as the
membership function of a fuzzy set in the antecedent part.

In the neural network driven fuzzy inference, for constructing a fuzzy set in the antecedent part
input data are divided into s pieces according to the dispersion condition of the data. The number s of
this dividing becomes the number of inference rules. A fuzzy set of each inference rule R; in the
antecedent part is determined from formulas (15), (16), and (17) by using the input data which belongs
to each division C;. This considers division C; as R,.

X3

7
O
)
///////
0 Xy

Fig. 3. Input space partition by neural network driven fuzzy reasoning.
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As a study for determining a fuzzy set using a neural network, the method of Pao [12] is
mentioned. Pao obtained a set of the sum of products using a neural network. However, this determines
a set of the sum of products from the connecting patterns between units in the neural network and does
not identify the shape of a fuzzy set from input and output data as in the neural network driven fuzzy
reasoning. .

Figure 3 shows an example of space division in the case where a membership value was
determined by using back-propagating error learning models when there are two input variables. The
division of the rules by the neural network driven fuzzy reasoning does not become a rectangle shape
as shown in Figure 2, and the boundary of the division becomes a non-linear shape.

) Next, a basic idea for the identification method of a consequent part is shown. In the neural
network driven fuzzy reasoning a consequent part does not become a linear formula. In formula (14)
the consequent part uses linear formula, but the back-propagating error learning model of formula (13)
is used instead. Since a back-propagating error learning model can identify the non-linear relationship
of input and output data, this becomes the same as tuning the consequent part of each inference rule into
a non-linear formula. The input and output relationship of the consequent part of each inference rule is
expressed as follows.

vs=NNs(x), s=1,2, - 7r (18)

Here, NN, is the back-propagating error learning model of the consequent part of the inference rule in
the s order, and the number of the output variable of NN, is one.

The input data, x; = (X;;, Xp, ..., %), i = 1, 2, ..., (N) are substituted for the input layer of the
back-propagating error learning model, NN,, and output data y; for input data x; are substituted for the
output layer in order to perform back-propagating error learning. Here, (N)’ represents the number of
the input and output data of the inference rule in the s order. In this way the non-linear relationship of
the entire input and output space can be identified by identifying the input and output relationship in the
partial space of the divided input and output space in the number of inference rules by using a back-
propagating error learning model in the consequence part.

- Now, it is also possible to identify the entire non-linear relationship using one back-propagating
error learning model. However, the identification of the entire input and output relationship using a
back-propagating error learning model for each partial space can represent the property of the entire
non-linear relationship more clearly than identification using one back-propagating errorlearning model.

Now, the best model is selected for a back-propagating error learning model in the consequent
part. In the conventional regression analysis there is a stagewise procedure [13] for determining an
optimal combination of input variables and a model formula by introducing or removing particular input
variables among the combinations of input variables in order to obtain a model that outputs the best
estimate. In this paper only the removal of input variables among the combinations of input variables
is performed using back-propagating error learning models in order to obtain an optimal combination
of input variables and model formula. Here, a sum of squares of errors is used as the evaluation for
determining input variables.

In this way a fuzzy set in the antecedent part and an input and output relationship in the consequent
part are determined. In the neural network driven fuzzy reasoning, inference rules are expressed as
follows. -

Ry IF x=(x, 21, >, %) is A,
THEN y,=NN:(x,, %, ***, Xm), (19)
s=1,2,, 7, msn
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Fig. 4. Structure of neural network driven fuzzy reasoning.

Where, there are r number of inference rules. A, represents a fuzzy set in the input space in the
antecedent part. The degree that input, x = (x,, X, ..., X,), belongs to the inference rule in the s order
is the membership value of fuzzy set A, for input x. The quantity of the operations in the consequent
part, y,, is the estimate of output when a combination of input variables (x,, x,, ..., X,,) is substituted for
the input layer of the back-propagating error learning model, NN,. Here, the number of the combinations
of variables used for the consequent part is m by the best model selection using back-propagating error
learning models.

The estimate, y;” in the case where input and output data, (y, x), i = 1, 2, ..., N are given is
obtained as follows.

2 Has(Xa, Xz, == Xin) X meY;s
y“_-'- l=1, 2_ eey N (20)
gl Has (X, Xizy *o00 Xin)

where, (X, X3, ..., X;,) is the membership function of fuzzy set A, and mey, is the estimate of output
in the i order from the input data obtained from each NN,.

Next, an algorithm for constructing inference rules in the neural network driven fuzzy reasoning
is shown.

Figure 4 shows the outline of the algorithm. The inference rules and the quanuty of the operation,
y: , for input data x; can be obtained in the following procedure.

Procedure 1. Input variables, x;, x,, ..., X,, Which relate to output y are set. Here, it is assumed
that input and output data, (y;, X)) = (¥;, X35 Xps --+» Xw)s i = 1,2, ..., N, were obtained. The input data,
X;J =1, 2, ..., n, show the data in the i order of the input variable in the j order.

Procedure 2. The input and output data are divided into r divisions, R,, s = 1, 2, ..., r. As stated
above, since division C, is considered as R, each division means an inference rule. Here, the input and
output data of each R, is expressed in (y, X)), i = 1,2, ..., N'. Here, N is the number of the input and
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output data of each R,.

Procedure 3. The shape of amembership function in the antecedent part is determined using NN,,,,
in Figure 4. The method for determining the shape of a membership function was described before.
Figure 5 shows an example which determines the membership value of fuzzy numbers in the antecedent
part by using 3 layers [2 X 3 x 3] of a back-propagating error learning model. In Figure 5 the first
input data are (x,;, x,;) = (0.2, 0.15), and (R, R,, R;) = (1,0, 0) is obtained. The structure of a back-
propagating error learning model is learned by allocating these relationships to the input layer and output
layer of back-propagating error learning models, respectively. Here, the repeating number of learning
is approximately 1,000. After learning, for example, the membership value, (R, R;, R;) = (0.4, 0.1,
0.2), is obtained for a fuzzy set in the antecedent part, which consists of the new data, (x,, x,) = (0.5,
0.4), except for the given input data.

Procedure 4. The structure of the consequent part is identified using NN,, NN,, ..., NN, in Figure
4. Each back-propagating error learning model NN, describes the consequent part of each inference rule
and defines that the structure has M layers [k X uy X ... X Uy X 11,k =n,n - 1, ..., 1. Then, the
best model is selected for each NN,. Now, the procedure for determining input variables using back-
propagating error learning models and a method for identifying the structure of a consequent part are
described.

First of all, K = n is defined, and the input data, x;, = (x,, X5, ..., Xy, { = 1, 2, ..., N, are
assigned to the input layer of the back-propagating error learning model, NN,. The output data, y;, is
assigned to the output layer of NN;. The input variables assigned to the input layer of NN, and the output
variables assigned to the output layer are expressed as follows.

As= {z, 2, ) %} 21

Q= {5} @2)

where, A represents a set of input variables assigned to the input layer of each back-propagating error
learning model NN,, and Q represents a set of output variables assigned to the output layer of NN,.

1
@ .‘—
Xy o
0.4 LN\
‘.'o 1
0.18 Yo = 1
0 0.2 0.5 15
Data for learning °
vo.| =x, X4 : No. | Ry Ry | Ry
1 |o0.2- |o0.18 1 1 o |o
TR S —_n F ]
1 e——
Data that is not for learning 5 My e Ry
" ol ve. |k, |Ry |0y
.. Ry Xy —r,
Y 0.4 |o0.1 [0.2
T | 0.5 | 0.4 & :
I | : Py

Fig. 5. Decision of a membership function in the antecedent part of rules.
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After the back-propagating error learning of NN,, an estimate ey, for the input data, x;,, ..., X, is
obtained. The repeating learning number is approximately 3,000. A sum of squares for the error
between output data y; and estimate ey; is calculated, and the evaluation value, O, for determining input
variables is obtained.

@.S=<§ (v—ey))/N, s=1,2, -, r 23)

In order to measure the refrection of the relation between input variables x; and output variable y,
input variable x; is temporally removed from a set of input variables, {x,, x,, ..., X;, ..., X;}. The input
data without input variables, X;, X;;, ..., Xy_1» Xyt --or X § = 1, 2, ..., N, are assigned to the input
layer of the back-propagating error learning model in the M layer, [k — 1 X 4, X ... X u,,_, X 1], and
output data y, are assigned to the output layer. After back-propagating error learning, estimate ey,’ for
the input data, x;, ..., X;_;, Xy41, ---» Xy, i Obtained. A sum of squares for the error between this
estimate ey, and output data y, is calculated, and the evaluation value, 6,_,7, for determining input
variables is obtained.

Oui=(Z(n=ew)D/N, s=1,2. . r (24)

The same operation is applied to the input variables besides x;, and the evaluation values, 6,_,*,

6,12, ..., O, ..., ©,_*, are obtained. Now, among the evaluation values, the minimum 6,_,* is
obtained. -

8;—1“""‘1}“ 6..1”. j=1, 2, k (25)

Formula (25) shows that the evaluation value, ©,_,, in the case where input variable x, was eliminated
from a set of input variables becomes minimum among the evaluation values, 6,_*", 6,_%, ..., 6,_7,
ey O

A set of input variables, A,, which will be assigned to the input layer of each back-propagating
error learning model is modified as follows by comparing 6,_, in formula (25) and 6, in formula (23).

As= {n, B, 'y Zecty Zear, 0y Xa) (26)
if  0,,%<8,*

As= {x, %, - 5}
if  0,,%28,°

When formula (26) is obtained, a sum of squares of the error decreases by eliminating input
variable x.. This means that estimate ey,’ expresses y, better than ey,. Therefore, the relation between
input variable x, and output variable y is considered to be weak, and input variable x, is eliminated from
aset of input variables, A,. As a result, a new set of input variables, A, consists of k — 1 pieces of input
variables. On the other hand, when formula (27) is obtained, the validity by eliminating the input
variable is not obtained. Therefore, the relation between input variable x, and output variable y is
considered to be strong and the set, A,, consisting of k pieces of input variables remains the same.

When the input variables can be reduced, & is changed ton — 1, n — 2, ..., 1, and procedure 4
is repeated until formula (27) can be obtained. When formula (27) is obtained, the procedure for
decreasing the input variables of back-propagating error learning model NN, is finished. When the
procedure ends, the back-propagating error learning model, NN,, having a set of final input variables,

27
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A, = {x,, X, ..., X,,}, becomes an optimal back-propagating error learning model which expresses the
structure of the consequent part of rule R,. The same operation is repeated for each NN,, and the
structure of the consequent part of all the inference rules is determined. This operation for decreasing
input variables is called a stagewise variable decreasing procedure by back-propagating error learning
models.

Procedure 5. The estimate output, Y, , is obtained from the following formula.

é Has(Xa, Xiz, 0 Xin) X mey;
yia_-'=1 - : 1:1' 2, N (28)
E /lAs(xm Xizy "y Xin)

where, mey, is the estimate by the optimal back-propagating error learning model obtained in procedure
4. .
Figure 4 shows that a product vperation, ®, is applied to a membership value in the antecedent

part of each inference rule, p,(x,, X», ..., X;), and to the estimate in the consequent part, mey;.
Consequently, the estimate value, y;", is obtained from the result of sum operation, ©, between rules.
In Figure 4, the expression, Zp (X, X, ..., X;,) = 1, is used.

4. EXPERIMENT OF AN INVERTED PENDULUM BY NEURAL NETWORK DRIVEN FUZZY
REASONING '

A pendulum flinging experiment using an inverted pendulum system is performed in order to show the
validity of neural network driven fuzzy reasoning.

The purpose of an inverted pendulum system is to perpendicularly control a freely rotating
pendulum without bringing it down, and the truck of the pendulum is run by a motor. When an inverted
pendulum system is used, problems that occur when the control theory is applied to actual equipment
can be confirmed visually, therefore, the validity of a control algorithm can be verified.

Figure 6 shows the structure of the inverted pendulum system used in this experiment. The gradient
of the pendulum is detected by potention meter b, and the pendulum is maintained perpendicularly by
quickly moving the truck in the direction where the pendulum falls down. The inverted pendulum device
consists of the following four parts.

1) Truck that runs on the rail

2) A pendulum which can rotate 360°. It is attached to the truck via a shaft.

3) A Pulley and a belt system which connect the above three parts.

As shown in Figure 6, the angle from the perpendicular pendulum and the displacement of the
truck can be detected by potention meters a and b respectively. The values of angle, ©, and of the
distance of the truck, 7, are converted to digitals using an A/D converter and entered in the personal
computer, Panacom-M700. The angular speed, A6, is obtained by calculating the difference in the
quantity between the present angle © and the angle before one sampling time, which is approximately
4 msec. The speed of the truck, Ar, is also obtained from the difference in the quantity between the
present speed and the speed before one sampling time. At the same time, M700 reasons the torque signal
of the motor by fuzzy reasoning. The torque command from M700 is converted to an analogue using
a D/A converter and are outputted to the DC motor.

The following shows the specifications of the inverted pendulum experimental system and the
attached parts.

1) Inverted pendulum experimental device body: 1,410 mm length, 400 mm width, 880 mm

height.

2) Inverted pendulum: 400 mm length, 40 g weight, 4 mm diameter.
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Fig. 6. Structure of an inverted pendulum device.

3) Motor: 25 W DC motor, 12.5:1 rotation ratio.

4) Computer: Panacom - M700 (CPU80286).

5) Control program: C language, 21 K bytes.

The inverted pendulum system used in this experiment has the following two balancing points.

1) Stable balancing point when the pendulum is down.

2) Unstable balancing point when the pendulum is inverted perpendicularly.

Here, the pendulum is flung from the stable balancing point by driving the truck horizontally, and
the pendulum which comes close to the unstable balancing point is stopped perpendicularly.

Next, the control rules of the inverted pendulum is created according to the algorithm for
constructing inference rules by neural network driven fuzzy reasoning.

Procedure 1. A method for creating input and output data is described here. A tester drives the
truck horizontally and flings the pendulum by pressing two buttons in the control signal input device for
flinging it and letting it invert. The operation is continued until the pendulum comes close to the
perpendicular condition, and the following input and output data are measured in the approximately 4
msec sampling time.

y: motor control signal (V)

x,: Distance of the truck from the original point (cm)

X;: Speed of the truck (cm/sec)

x;: Angle of the pendulum from the original point (deg)

x,: Angular speed of the pendulum (deg/sec)

The input values, x, and x, are obtained by calculating the difference in the quantity of x, and x;.

Approximately 1,000-3,000 pieces of data are measured from this operation, and 90 pieces of data
are extracted as the input and output data of neural network driven fuzzy reasoning. Table 1 shows the
extracted input and output data.

Procedure 2. The input and output data are defined in two rules according to the dispersion
condition of the data.

Procedure 3. The shape of the membership function in the antecedent part is determined. The
back-propagating error learning model for determining the structure of the antecedent part has three
layers [4 x 6 X 2]. The number of learning is approximately 1,000.
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Table 1 Input and output data for controlling an inverted pendulum.

Output data Input data
No. xi (cu]) xa [ca/sec]) x3 (deg] x4 [deg/sec) y (v}
1 -1.1482 0.0000 178.5074 0.0000 0.7597
2 -0.0201 8.5486 180.9129 34.5660 0.7421
3 3.2197 29.9073 185.6439 34.5660 0.7617
4 7.8338 38.4472 188.4660 0.0000 0.0039
5§ | 10.9510 4.2697| 182.7386 -121.0536{ -0.7168
6 9.3718 -21.3586| 165.3085 -155.6554| -0.7968
1 5.3319 -38.4560| 151.5283 -69.1678| -0.7519
8 0.1432 ~-42.7261 150.9487 51.8840 ~0.7519
/,_.\-____—’_///_’——*_/_

93 7.9980 42.7261 85.663 ~380.4464 ~0.0136
9 11.7713 4.2701 199.1743 -639.8375 -0.7265
95 10.6843 ~11.0885 117.4961 -622.5536 -0.7519
7.0135 -42.7261 56.6514 -345.8786 -0.7519

97 1.9891 -38.4560 27.0170 -138.3357 0.0039
98 -2.9937 ~-34.17T14 16.6419 ~51.8822 -0.0019

Table 2 Elimination of the input variables of rule 1.

Case where variables are not eliminated ®4x=0.016

Case where x, is eliminated 8,'1=0.007

Case where x, is eliminated 0,;4=0.032

Procedure 4. The structure of the consequent part is identified. The back-propagating error
learning model for determining the structure of the consequent part has three layers [k X 6 X 1], k =
4,3, ..., 1. The number of the learning of each back-propagating error learning model is approximately
3,000. Table 2 is obtained in relation to © of rule 1 by the stagewise variable decreasing procedure using
back-propagating error learning models. From Table 2 the following are obtained.

8,'=0.016 29)
83“=ml_in®3”(=0.007). j=1,2,-, 4 30)

Therefore, the following is defined.
8;''<e,! @31

The input variable, x;, is eliminated, the A, becomes A; = {x,, x;, x,}.
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Photograph 1 Control of an inverted pendulum (1).

Next, the stagewise variable decreasing procedure using back-propagating error learning models
is applied again to A; = {x,, X3, x,}. The following are obtained by using formulas (23), (24) and (25).

0,''=0.007 32)
8,*=min®,"(=0.021), /=2, 3, 4 33)
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Photograph 2 Control of an inverted pendulum (2).

Therefore, the following is obtained.
0,12>0,! (34)

The input variables are not eliminated, and the algorithm for rule 1 is completed in the second repeating
calculation.
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As for rule 2, the stagewise variable decreasing procedure using the same back-propagating error
learning model is applied to eliminate input variable x,, and the algorithm is completed in the second
repeating calculation.

The inference rules obtained as a result are shown below.

R UIF x=(x, 5,5, %) is A4,
THEN y,=NN, (%, %, %),
R, [ IF x=(x, %, %, x) is A,

THEN 3, =NN,(x, %, x,)

(35)

Photographs 1 and 2 show the control of a pendulum according to the inference rule in formula
(35). Photograph 1 shows an action which flings a pendulum from the stable balancing point in
approximately 10-15 msec/time of reasoning time and seizes it. The estimate, i, can be obtained from
formula (28). The inverted pendulum certainly flings up where the truck is located on the rail. The
pendulum can be flung by adding disturbance during the initial condition of control or during reasoning.
Photograph 2 shows the control of the flinging of a pendulum where the angular of the pendulum was
changed in the initial condition of the control.

5. CONCLUSION

Conventional fuzzy reasoning has problems. One of them is a tuning problem and the shape of fuzzy
numbers and the labels of fuzzy variables in the antecedent and consequent parts of fuzzy reasoning rules
must be changed so that the result of fuzzy reasoning becomes optimal. In the neural network driven
fuzzy reasoning, when input and output data are given an optimal inference rule and membership
function can be determined by using the non-linear characteristic and the learning characteristic of back-
propagating error learning models. An experiment using an inverted pendulum was performed in order
to confirm the usefulness of neural network driven fuzzy reasoning. The pendulum certainly flung up
from the down position at the stable balancing point and came to a standstill. Since the inference rules
of fuzzy control can be created by using the learning function of back-propagating error learning models
in this method, a learning function can be applied to fuzzy control. In the future, it will be necessary
to discuss a learning function which follows the movement of a reasoning environment that changes
dynamically .
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