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In conventional retrieval systems, retrieved results do not always satisfy user requests since only
some operators for “and” and “or” in reasoning queries are defined. In this paper, we propose new
fuzzy connectives which can express “and/or” operators that provide users with results satisfactory
to their request. The fuzzy connectives are defined using a convex combination with a weight
function of the parametric {-norm and ¢-conorm proposed by Schweizer. When user estimates
for retrieved results are given, parameters of the fuzzy connectives are adjusted to minimize the
sum of square errors between user estimates and the output of fuzzy connectives by the steepest
descent method. The fuzzy connectives are called “fuzzy connectives with a learning function,”
which means any operators between the drastic product and drastic sum. They can represent a
linear mean operator between a t-norm and t-conorm by using convex combination. We report
the formulation of fuzzy connectives with a learning function and present the results of a retrieval
experiment which demonstrates their usefulness.

Keywords: fuzzy retrieval, fuzzy connectives, t-norm, t-conorm, mean operator, steepest descent method,
learning function

1. INTRODUCTION

There have been many studies (see, e.g., [1-8]) on retrieval methods which treat human uncertainty
using fuzzy theory, where fuzzy sets have represented the uncertainty of such words as “cheap” and
“near,” and such retrieval queries as “search for a hotel that is cheap and near the place I must
go to conduct business.” It would be most practical for retrieval queries to take a more natural
form. Retrieval in this context includes seeking the correspondence of fuzzy sets for each piece of
retrieval data, executing *“‘and/or” operations, calculating the correspondence for retrieval queries, and
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outputting retrieval results in order of high to low correspondence. In conventional fuzzy retrieval
systems, different users always obtain the same retrieval results, though they do not always satisfy
the subjective user requests

One retrieval method was recently suggested in which the parameters of the retrieval algorithm
are adjusted by employing user estimates of retrieval results as the degree of satisfaction of a re-
trieval request so as to increase satisfaction and yield results which satisfy the user. Ogawa et al. [9]
proposed a document retrieval system which adjusts the membership values which express the rela-
tionship among the keywords of a document and retrieves the document which the user most wants.
Maeda and Murakami [10,11] suggested a retrieval system which adjusts “and/or” operators within
retrieval queries and retrieves results which satisfy the user; however, the retrieval relationship among
document keywords must be set in advance so as to process the huge database required, the matrix
must be squared, and the dimensionality of processible databases is limited. Zimmermann proposed
fuzzy connectives which can express t-norms [12], t-conorms [12], and mean operators [13], which
he extended and used in a later-developed retrieval system. Zimmermann fuzzy connectives [14] are
multi-input fuzzy connectives which operators between the drastic product and drastic sum, including
mean operators. Maeda and Murakami [10,11] also suggested a method which expresses operators to
determine the weight of inputs and adjusts operator parameters to minimize the error between opera-
tor result and output data; however, Maeda fuzzy connectives can only express operators between the
algebraic product and algebraic sum. It cannot express operators for the ¢-norm of a drastic product
or the t-conorm of a drastic sum, etc.

We discuss adjustment of fuzzy connectives herein. In fuzzy retrieval systems, fuzzy sets
with multi-order dimension are expressed by “and/or” operators among the fuzzy sets of each input
dimension in retrieval queries, the membership value for each piece of data in the database is
calculated, and the result is output in order of high to low. A retrieval query with fuzzy sets P; and
P, is expressed as P = P; and P, (regarding “employee = high salary and age about 30” as the
retrieval query). If the membership functions of P, and P, are expressed by pup, (1) and pp,(z2)
and operator “and” is represented by (D), the membership function of the retrieval query is written as

I-‘P(x) = BPiNP; (x11z2) = pp (x1)®l‘Pz (22)-

The retrieval result is written as
{x*} = {x | max pp(x)}.

To obtain x* which satisfies a user request better, we adjust the membership functions rather than
adjusting the fuzzy connectives. The shape of up, (z1) and pp,(z1) are adjusted to make pp(x*)
largest. A membership function with multi-order dimension yp, np, (1, Z2) is adjusted in this fashion.
However, fuzzy sets with multi-order dimension P; N P, is expressed by using operator ™ (“and/or”
operators). Therefore, even though the shape of up, (1) and up, (z2) are adjusted, we cannot be sure
that the membership values pp,np,(z},z3) will be larger. We can conclude that it is more natural
to express operators (D (“and/or” operators) that correspond to z; and z2 and adjust the operator
parameters to improve the satisfaction of user requirements than it is to adjust the membership
functions.

We propose new fuzzy connectives which express “and/or” operators of retrieval queries that
satisfy user requests and which are defined using a convex combination with a weight function of
parametric the t-norm and t-conorm which was proposed by Schweizer [13]. We also propose a
method where the parameters of fuzzy connectives are adjusted to minimize the sum of square error
between user estimates and the output of fuzzy connectives by the steepest descent method. When
user estimates of a retrieval result are given, the parameters of ¢-norm and t-conorm are adjusted to
minimize the sum of square error between the user estimate and the fuzzy connective output. The
fuzzy connectives we propose are called “fuzzy connectives with a learning function.” Maeda fuzzy
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connectives express operators between the algebraic product and algebraic sum, but connectives with
a learning function not only express operators between the drastic product and drastic sum but also
represent linear mean operators between the t-norm and ¢-conorm.

We propose formulation of fuzzy connectives with a learning function, and present the results of
aretrieval experiment where fuzzy connectives with a learning functions are employed to demonstrate
their usefulness.

2. FUZZY CONNECTIVES

We call the ¢-norm, t-conorm, and mean operators [13] “fuzzy connectives.” t-norm 7 is a function
of T(z1,z2): [0,1] % [0,1] — [0, 1], and the following conditions must hold:

T(xv 1) =z, T(IL‘, 0) =0, (1) .
T(z1,22) < T(y1,92) (21 S 41, 22 S v2), (2)
T(:E]_,Iz) = T(Iz, 331), (3)
T($1,T(22,.’E3)) = T(T(zly 1"2)13‘3); (4)

where (1) is the boundary condition, (2) is the monotonicity condition, (3) is the commutativity
condition, and (4) is the associativity condition.
Dual function t-conorm S is obtained by the following formula:

S(zl)x2)=1—T(1—zlvl—x2)' (5)

Like a t-norm, t-conorm S must also satisfy the above four conditions.
The following operators are typical operators of t-norms and ¢-conorms:

1) t-norm
Logical product: z; A 3 = min {z,z2}. (6)
Algebraic product: z; - 2 = 1, Z2. )
Bounded product: £, ® z2 =0A (21 + 22 — 1). (8)
I (:L‘g = 1),
Drastic product: z1Az2 = ¢ z2 (71 = 1), (9)
0 (z1,z2 <1).
2) t-conorm:
Logical sum: z; V 23 = max {z1,z2}. . (10)
Algebraic sum: 1 +z3 =1V (1 + 22). (11)
Bounded sum: z1 @ 2o =1V (z1 + z2). (12)

1 (z2=0),
Drastic sum: z; v 22 =< 2o (z; =0), (13)
’ 1 (z1,z2 >0).

Various t-norm and ¢-conorm operators with parameters have been suggested by Schweizer,
Yager, Dombi, Dubois, and Mizumoto (e.g., see [13]). Schweizer suggested ¢-norm T and ¢-conorm
S as follows:

T=1-(1-z1)?+ (1 —22)? — (1 —21)P(1 — 22)?(1 — 25)?)/?, p>o0, (14)
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S=(z’1’+z’2’—z{’x‘2’)l/1°, p>0, (15)

where p is a parameter which when changed can express various operators. For instance, for ¢-norm
T, if p = oo it represents logical product A; if p = 1 it represents algebraic product -; if p — 0 it
represents drastic product A. Similarly, t-conorm S can also express various operators.

Mean operators include the arithmetic mean, geometric mean, and the dual geometric mean:

Arithmetic mean: AM = &2” (16)
Geometric mean: GM = /T1, Z3. a7

Dual geometric mean:DGM =1 — /(1 — z1)(1 — z2). - (18)

The relationship among these fuzzy connectives is expressed as follows:
ASOSL - SEANSGMSAMSDGMSVES+So®sV. (19)

In another respect, there are many studies of operators beyond ¢-norm and ¢-conorm operators.
Zimmermann and Zysno [14] proposed multi-input and single-output operators which can express
any operators between algebraic product “” and algebraic sum “+,” including mean operators. Zim-
mermann operators perform as follows:

1-r T

n n
v=|[]G=)" 1-JJ-=)"] , (20)
j=1 j=1
n
Zaj=n1 0§7§1) (21)
=1
where z;, j = 1,2,...,n, are inputs, y is the calculation result; n (n 2 1) is the number of inputs, o;

and -y are operator parameters (o; represents the weight among each input; v represents the weight
between the algebraic product and algebraic sum, e.g., if v is small, the weight of the algebraic
product is increased; if -y is large, the weight of the algebraic sum is increased).

Maeda and Murakami [10] extended the Zimmermann operators and proposed the following two
operators:

1-r(z) r(z)
n n

y=|[I(;)" 1-J[a-gj)~ ,
j=1 ) j=1 (22)
n n
Y oj=n, y(z)=a0+) ez, 0Sy<L1,
i=1 i=1
n l-r n r
y=|[]@)"® 1- [ -=5)7®
j=1 i=1

(23)

> oi(z) =n, oj(z) =bo+ > bikzk, 0SS0,
j=1 k=1

where ag, a;j, 05, bjo, bji, and vy are operator parameters.
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The convex formula combined with input variables z1, z2, ...,z is represented by fuzzy con-
nectives in (22) by extending v in (21), so that by changing the input value, the fuzzy connectives
in (22) can change the weight distribution between the algebraic product and algebraic sum. The
operators are expressed in such a way that, when the input value is small, the algebraic product is
increasingly important; when the input value is large, the algebraic sum is increasingly important.

On the other hand, the convex formula combined with input variables z;,zs, ..., z, is repre-
sented by the fuzzy connectives in (23) by expanding o; in formula (21), so that by changing the
input value, the fuzzy connectives in (23) can change the weight distribution among z, s, ..., Tn.
The operators are expressed in such a way that when the input value is small z; is increased; when
the input value is large z7 is increased.

Maeda proposed a learning function which, when input and output data are given, the most
suitable parameter is sought by using a modified Newtonian method to minimize the sum of square
error between the operator result and the output data. However, since we use a modified Newtonian
method, only a local solution can be obtained during parametric search.

‘We now show the retrieval procedure of fuzzy retrieval using these fuzzy connectives. Consider
retrieval queries P and Q:

P =p; and py, (24)

Q=q or g, (25)

where p1, p2, q1, and ¢o are fuzzy propositions expressed by the following fuzzy sets:
“employee = high salary and/or age about 307,

and can be regarded as retrieval queries.

Retrieval includes calculation of the correspondence of each data tuple stored in the database
which satisfies the fuzzy proposition [8]. The t-norm and ¢-conorm (“and/or” operators, respectively)
are employed to calculate the correspondence of retrieval queries, and the result is output in order
high to low correspondence. First, the correspondence of W tuple x; = (z1,22), 1 = 1,2,..., W,
stored in database that satisfy retrieval query formulas (24) and (25) is calculated as follows:

Bp(X:) = pip, (Ti1) Dbp, (Ti2), (26)

”’Q(xi) = Hq (zil)@/‘qz (:L‘,'z), (27)

where pp, (Zi1), pp, (Ti2), and pg, (1), pq, (zi2), respectively, represent the membership functions
of fuzzy propositions p;,p2 and ¢;, ¢z of tuple x;; @ and @ represent the valuies of the ¢-norm
and t-conorm, respectively. Once @ is set as one ¢-norm and @ is set as a t-conorm, we calculate
pp(x;) and po(x;) of W tuple x; = (zi1,zi2). The result is obtained in order from high to low
correspondence.

However, “and/or” in retrieval queries are defined as one ¢-norm and one ¢-conorm, respectively,
so one cannot be sure of obtaining an ideal retrieval result for many various users. In addition, even
though adjusted for each user by Zimmermann and Maeda fuzzy connectives, operators cannot express
the drastic product and drastic sum. So we cannot say that “and/or” expressed by various users are
completely expressed by the operators.

3. FUZZY CONNECTIVES WITH A LEARNING FUNCTION
3.1. Construction of Fuzzy Connectives with a Learning Function

‘We now propose new fuzzy connectives [16,17] to work as retrieval operators. These fuzzy connec-
tives can express any operators between the drastic product and drastic sum. When the user estimate
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Fig. 1. An example of m in a fuzzy connec- Fig. 2. An example of a fuzzy connective
tive with a learning function. with a learning function.

of retrieval results is given, fuzzy connective parameters are adjusted to minimize the sum of square
error between the user estimate and the fuzzy connective output. These fuzzy connectives are termed
“fuzzy connectives with a learning function” (FCLFs).

Fuzzy connectives with a learning function are expressed as follows:

fE)=m-S+(1-m)-T, (28)

n
m=p1 - Y (p1 - Ppj+1);
Jj=1
n (29)
0§Pl’-~~:1’n+1 ély Og "'('"'DPI'*‘ZP;’ é 17
j=1

where T and S represent t-norms and t-conorms expanded to be multi-input. When a Schweizer
t-norm and ¢-conorm are used, T" and S are represented respectively as follows:

l/pn+2
n

T=1-[1-]]{1-@-z;)P+} , Dtz >0, (30)

Jj=1

n 1/Pn4s
S=|(1- H(l —zin) yPnts > 0, - (31)
=1

where p1,p2,...,Pn+3 are parameters.
The FCLFs of (28) can be combined linearly with a T and S by using the value of m, which
can be calculated using (29) from input variables z;, z3, ..., Z,. Thus, according to the input value,

FCLFs can change the weight between T and S. Figure 1 shows an example of m with two inputs
(z1 and z2), where, when z; and z; are small, m is small; as z; and z5 increase, the parameters are
set to make m larger. Because input z; is more important than input z,, the gradient of m in plane
z1 = 0 is bigger. An example of the FCLF input/output relationship using m from Fig. 1 is depicted
in Fig. 2. According to (29), when inputs z; and z; are small, FCLFs become a t-norm weight
operator; when inputs z; and z, are large, FCLFs become a t-conorm weight operator. Because
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Table 1. Relationship of Operator and Parameters in Fuzzy Connectives
with a Learning Function

Parameter
Fuzzy
p1 p2 p3 P4 ps . connective
0 any -0 Drastic product
1 1 1 -0 any Drastic sum
0.5 0.5 0.5 oo oo Arithmetic mean operator

input z2 has more weight than input z;, the t-conorm is more important for the FCLF when input
o is large.

FCLFs can be expressed as parametric ¢t-norms and t-conorms. Compared to Zimmermann
and Maeda fuzzy connectives, which can only represent operators between the algebraic product and
algebraic sum, FCLFs can represent any operators between the drastic product and drastic sum. When
parameters p1, pa,...,ps Wwith two inputs (z; and z) are changed, the FCLF can express various
operators (see Table 1). Various t-norm and t-conorm operators can be expressed by changing
parameters p4 and ps. In addition, when convex combination (28) is used, as with changing ¢-norms
and t-conorms, FCLFs can represent linear mean operators.

Just as with the conventional fuzzy connectives used to calculate (26) and (21), when FCLFs
are used, the correspondence of a retrieval query can be calculated as follows:

I-"P(xi) = Wpy (zl'l) ® Hp, (.’L’i2), (32)

BQ(*i) = pg, (Ti1) ® pg, (zi2), (33)

where pip, (Ti1), pp, (Zi2), and prg, (Zi1), e, (Ti2), respectively, represent the membership function
of fuzzy propositions p;,p2 and gy, g2 related to tuple x; = (41, Zi2), ¢ = 1,2,..., W; ® represents
an FCLF, which here can express the t-norm and t-conorm included by operators between the drastic
product and drastic sum. Thus, the ¢-norm in (32) and the ¢t-conorm in (33) can be represented by
the same sign: ®.

3.2. Method for Adjusting Parameters of the FCLFs

When data (x;,y;) = (zi1,- .-, Tin, ¥i), ¢ = 1,2,...,N, are given, the FCLF parameters are adjusted
to minimize the sum of square error. We now describe this adjustment method.
Sum of square error E between operator result § and output y is defined as follows:

E= @—'z—l-’ﬁ (34)

We next calculate the correction value for parameters p;, j = 1,2,...,n + 3, which makes FE
smallest. To minimize E, the effect of a minute change (8E/0p;) in parameter p; on difference E
is expressed by the effect of a minute change (84/8p;) in p; on result § and the effect (OE/87) of

result § on E as follows:

9E _OE 0y 55)
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Name of hotel | Accommo-| Time to sttion
dation 09 | (min) _

A 15000 20
B 15000 15
C 15000 10
D 15000 3
E 12000 20
F 12000 15
G 12000 10
H 12000 3

I 10000 20
I 10000 15
K 10000 10 .
L 10000 3
M 5000 20
N 5000 15
(0] 5000 10
P 5000 3

Fig. 3. Hotel database.

5 10 15

Accommodations Thousand ¥ Time to station Min
Fig. 4. Membership function of “cheap.” Fig. 5. Membership function of “near.”
which can be obtained from (34) as
— =j-y. 36
a5 ~ IV (36)
According to (28)—(31), the right-hand side (83/8p;) of (35) can be obtained from (28)—(31) as
follows:
o] 2
—=|1- z;| - (S-T), 37
o1 27| (5-1) (37)
J—
89 .
—=z;,-(S-T), j=2,3,...,n+1, (38)
op
89 oT
= 1 -m) - y 39
Opn+2 ( ) Opni2 (39)
oy as
=m- , 40
Opn+3 Opn+3 (40)
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<>

Convenient hotel for
,business trip

FCLFs

Accommodations are cheap ©.3] X1 X2%5.9) Station is near

[ 3 i

Cheap) o
0.
12000 Cost 12000 ¥ 10 Time
4 Database
Hotel name A dati Time
A 15000 20
B 15000 15
[ 15000 10
P 5000 3

Fig. 6. Conceptual scheme of the retrieval experiment.

where T and S are the Schweizer t-norm and t-conorm, respectively, so that 8T /Opp+2 and
85/0pn+3 in (39) and (40) can be obtained as follows:

oT
Opn+2

=(1 = T)(=— log(f) + (1 — z2)P+>
pn+2

-log(1l — z5) — pn+12 7 (1 = zp)PmH2 (a1)
log(1 — z1) — (1 — &)P™+2(1 — gq)Pr+2
-log(1 — z1)(1 - z3))),
s
3pn+3

! log(g) +
P2i3 Pnt3 g

- (€1Pn+3log(21) + PE 45 log(z2)

— T1Pn4+3%2Pn+3108(21, 72))),
f=(1=z)Pr+2 + (1 — z)Pn+2

= (1 = z1)Pm+2(1 = zg)Pm+2,

=5(
(42)

(43)

9 = T1Pn+3 + T2Pn+3 — T1Pn+3T2Pnt3. (44)

OE/08p; can be calculated by using (36)—(44). Thus E can be minimized by using the steepest
descent method [15] and changing parameter p; in the opposite direction in dE/dp;. E can also be
minimized by using constant (> 0) and changing parameter d3/0p; repeatedly in the direction of
the following formula:

Ap; = -0 o—. (45)
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Table 2. Estimate Given by User

Extent
that Extent
accommo-  that Estimate
dation station
Hotel is cheap  is near a b c d
Learning/using data
C 0.0 0.7 0.0 0.7 0.3 0.3
E 0.3 0.0 0.0 0.3 0.1 0.0
F 0.3 03 0.0 0.8 0.3 02
G 03 0.7 0.1 0.9 0.5 0.5
J 0.7 03 0.1 09 0.5 0.5
K 0.7 0.7 0.2 1.0 0.7 0.8
L 0.7 1.0 0.7 1.0 0.8 1.0
N 1.0 03 0.3 1.0 0.7 0.8
Sum of square error 0.52091 0.52091 0.02361 0.00481
of initial parameter
Checking/using data
A 0.0 0.0 0.0 0.0 0.0 0.0
B 0.0 0.3 0.0 0.3 0.1 0.0
D 0.0 1.0 0.2 0.9 0.5 0.6
H 0.3 1.0 0.3 1.0 0.6 0.8
I 0.7 0.0 0.0 0.7 0.4 0.3
M 1.0 0.0 0.2 0.9 0.5 0.5
o 1.0 0.7 0.7 1.0 0.9 1.0
P 1.0 1.0 1.0 1.0 1.0 1.0
Sum of square error 0.25705 0.32705 0.02705 0.00955

of initial parameter

Table 3. Parameters After Learning

Parameter User A User B User C User D
|21 0.0044 0.9791 0.4255 0.0638
123 0.0078 0.9882 0.5417 0.5168
P3 0.0103 0.9939 0.4087 0.5470
P4 1.4362 0.1943 0.7912 1.2241
Ps 0.1973 0.5665 1.0103 0.8147

4. RETRIEVAL EXPERIMENT USING FCLFs

We now use FCLFs to do a retrieval experiment to demonstrate their usefulness. We chose a simple
trial system: :
Retrieve: convenient hotel for business trip.

from a hotel information database. Data from 16 hotels on cost of accommodations (in yen) and
the time to a transportation station (in minutes) were stored in the database (Fig. 3). We used the
following retrieval query:

Convenient hotel for business trip = “accommodations are cheap”

and/or “the station is near,”
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Table 4. Estimated and Retrieval Results

User A User B
Retrieval Retrieval
Order Estimate result Estimate result
1 P 1.00 P 1.00 P 1.00 P 1.00
2 (0] 0.70 (@) 0.70 (¢) 1.00 (o] 1.00
3 (0] 0.70 [e) 0.70 (@) 1.00 (0] 1.00
4 N 0.30 H 0.31 D 1.00 H 1.00
5 N 0.30 H 0.31 . D 1.00 H 1.00
6 M 0.20 K 0.21 H 1.00 D 0.99
7 K 0.20 G 0.08 M 0.90 M 0.99
8 D 0.20 J 0.08 J 0.90 K 0.97
9 I 0.10 E 0.03 G 0.90 G 0.92
10 G 0.10 D 0.01 D 0.90 I 0.92
1 1 0.00 M 0.01 E 0.80 E 0.79
12 E 0.00 C 0.01 I 0.70 C 0.69
13 E 0.00 I 0.00 C 0.70 I 0.69
14 C 0.00 E 0.00 E 0.30 B 0.30
15 B 0.00 B 0.00 B 0.30 E 0.29
16 A 0.00 A 0.00 A 0.00 A 0.00

A square around a letter represents adjusting/using data.

Table 5. Sum of Square Error Between Estimated and Retrieval Results

User A User B User C User D
Adjusting/using data
Fuzzy connective with learning function 0.0010 0.0010 0.0025 0.0040
Maeda fuzzy connective - - 0.0517 0.0453
Verifying /using data
Fuzzy connective with learning function 0.03652 0.0084 0.0073 0.0052
Maeda fuzzy connective - - 0.3379 0.3510

where “cheap” and “near” are membership functions, depicted in Figs. 4 and 5.

In this retrieval system, we adopt an FCLF to express “and/or,” adjust the FCLF parameters by
the user estimate of “convenient hotel for business trip,” and retrieve the satisfied result.

Figure 6 depicts the conceptual scheme of this retrieval experiment. There were five retrieval
steps:

1. Users determine the form of membership functions “cheap” and “near.”

2. Users give a 16-hotel estimate of “convenient hotel for business trip,” eight of which are
learning/using parameter; the others are checking/using data used to check the retrieval resuit.

3. Using the eight learning/using data, we adjust the FCLF parameters by the steepest descent
method.

4. Using “and/or” after learning, we calculate the correspondence of the 16-hotel retrieval
queries from (32) and (33) and output the hotels in order of high to low correspondence.

5. We check the retrieval result using the checking/using data.
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To demonstrate the usefulness of FCLFs, four users supply estimates from the following four
points of view: a) with the idea of a drastic product; b) with the idea of a drastic sum; c) with the
idea of an arithmetic mean operator; d) with the view that, when each factor is small, we emphasize
“and,” and when each factor is large, we emphasize “or.”

The four user estimates for learning and checking data for each hotel are shown in Table 2. The
initial value of the parameters in (29)—(31) are set at p; = 0.0, p2 = p3 = 0.5, py = 1.0, ps = 1.0.
The parameters of FCLFs are adjusted with constant o = 0.01 in (45) and the learning/using data
in Table 2. The parameters after learning are given in Table 3. The estimated and retrieval result
are given in Table 4 in order of value for two users (A and B), from which we can conclude that,
not only for learning/using data, but also for checking/using data, the retrieval results agree quite
well with the estimates, especially for drastic product users and drastic sum users, and the expected
results can be retrieved.

We then conducted the same retrieval experiment by replacing the fuzzy connectives with Maeda
fuzzy connectives. We compare these results with that of a retrieval experiment using FCLFs.
Maeda and Murakami [10] described development of the fuzzy connectives in (22) in more detail
than that in (23), so we just compare the fuzzy connectives in (22) to an FCLF. To make the
experimental conditions the same as those for FCLFs, the initial parameters in (22) were set at
ap = 0.0, a; = ag = 0.5, 01 = 02 = 1.0, and the learning coefficient in the modified Newtonian
method was set at 0.01. The sum of square error between the estimated and retrieval results are
given in Table 5. Sum of square of error T'E is calculated as follows:

Z (G —v)°
TE = 51_2___, (46)
where y; is the estimate of learning/using data or checking/using data, and ; is the retrieval result
using Maeda fuzzy connectives or FCLFS.

Table 5 compares the sum of square errors using FCLFs to those in Table 2, and shows that
it is small not only for learning/using data but also for checking/using data. This demonstrates the
usefulness of FCLFs. In terms of Maeda fuzzy connectives users A and B’s estimates are based on
the drastic product and drastic sum, respectively, so that Maeda fuzzy connectives cannot express this
estimate. Comparing users C and D, the sum of square error using FCLFs is smaller than that when
using Maeda fuzzy connectives. We can thus conclude that FCLFs express user “and/or” operators
better.

5. CONCLUDING REMARKS

We have described fuzzy connectives with a learning function which learn fuzzy connective pa-
rameters to express user retrieval requests by the steepest descent method and have demonstrated
their usefulness in an experiment. The experiment showed that FCLFs can represent any operators
between the drastic product and drastic sum; they can also represent various user “and/or” operators.
It is now important to compare this method with other retrieval methods [18] and to discuss FCLFs
in multi-layers [19] to express more complicated retrieval queries. :
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