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A B S T R A C T  

Whereas conventional fuzzy reasoning lacks determining membership functions, 
a neural network driven fuzzy reasoning (NDF) capable of determining member- 
ship functions uniquely by an artificial neural network is formulated. In an NDF 
algorithm the optimum membership function in the antecedent part of  fuzzy 
inference rules is determined by a neural network, while in the consequent parts an 
amount of reasoning for each rule is determined by other plural neural networks. 
On the other hand, we propose a new algorithm that can adjust inference rules to 
compensate for a change of  inference environment. We call this algorithm a neural 
network driven fuzzy reasoning with learning function (NDFL). NDFL can deter- 
mine the optimal membership function and obtain the coefficients of linear 
equations in the consequent parts by the searching function of the pattern search 
method. In this paper, inference rules for making a pendulum stand up from its 
lowest suspended point are determined by the NDF algorithm for verifying its 
effectiveness. The NDFL algorithm is formulated and applied to a simple numeri- 
cal example to demonstrate its effectiveness. 

KEYWORDS: f u z zy  reasoning, f u z zy  logic, neural network, membership 
functions, learning function 

I N T R O D U C T I O N  

Extensive applications of fuzzy reasoning for various control problems have 
been reported (Hirota [1]). However, in these cases, fuzzy reasoning is 
generally involved with tuning problems (Lee [2]). That is, the form of the 
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fuzzy number of antecedent and consequent parts of fuzzy inference rules has 
to be adjusted to minimize the difference between estimation of fuzzy reasoning 
and output data for a given input data. 

A neural network driven fuzzy reasoning (NDF for short) (Hayashi et al. 
[3], Takagi and Hayashi [4]) by which inference rules are constructed from the 
learning function of neural networks (Anderson and Rosenfield [5], Tank and 
Hopplied [6]) for solving tuning problems was previously reported. NDF is a 
type of fuzzy reasoning having an error backpropagation type of neural 
network (Rumlhart et al. [7]) that represents fuzzy sets in its antecedent, while 
another plural error backpropagation type of neural network represents a 
relationship between input and output data of the consequent of each rule. NDF 
can obtain the optimal membership function and inference rules from the 
observed input-output data. However, NDF is unable to alter its inference rule 
when an environment for constructing that rule is dynamically changing. Thus, 
we propose a new algorithm that can adjust its inference rules in response to 
changes in the inference environment. We call this algorithm neural network 
driven fuzzy reasoning with learning function (NDFL). NDFL can determine 
the optimal membership function in the same way as NDF by a learning 
function of the error backpropagation type of neural network and obtain the 
coefficients of linear equations (Sugeno and Kang [8]) in the consequent parts 
by the searching function of the pattern search method (Hooke and Jeeves [9]). 

In this paper, an algorithm for constructing inference rules based on NDF is 
introduced first, and an experimental verification of its effectiveness is per- 
formed taking as an example an inverted pendulum system. Furthermore, the 
NDFL algorithm is formulated and applied to a simple numerical example to 
demonstrate its effectiveness. Since the fuzzy set of the antecedent and the 
input-output relationship between consequent parts can be determined by 
means of NDF and NDFL without fine tuning of inference rules by utilizing 
the neural network learning function acquired from the input-output data, it is 
advantageous to solve tuning problems of fuzzy reasoning. 

N E U R A L  NETWORK DRIVEN FUZZY R E A S O N I N G  (NDF) 

In NDF, the membership function in the antecedent part is determined in 
multidimensional space. For example, the conventional fuzzy inference rules 
for representing a fuzzy model (Sugeno and Kang [8]) shown below are 
considered. 

Rl: IF x, is FSL and x 2 is FSL , 

R2: IFx  I is FSL and x 2 is FI3 o,  

THEN y ~= a~o  + a , ~ x j  + a12x  2 

(la) 

THEN y2= a20 + a2~x ~ + a 2 2 x  2 

(lb) 
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R3: IF x I is FB6, THEN y3--  a30 + a31x I ( lc)  

wherein x t and x 2 . . . . .  x3~ are input variables; y~, Y2, Y3 are output 
variables; alo and others are coefficients; and FsL and Fac  are fuzzy numbers 
where SL and BG mean small and big, respectively. Since the antecedent of  
fuzzy inference rule R I means both x t and x 2 are small, the fuzzy set 
F I = FSL X FSL can be constructed in a partial space of  input as shown in 
Figure 1. Fuzzy sets F 2 = FsL X FBG and F 3 = FBc for R 2 and R 3 can be 
obtained similarly. Since the boundary between partial spaces is vague, the 
boundary is shown by a hatched line. This means that an input space consisting 
of  x~ and x 2 is divided into individual partial spaces by a number of  fuzzy 
rules, and the fuzzy sets of  the antecedent of  each inference rule are con- 
structed in each partial space. The NDF algorithm determines these fuzzy sets 
of  antecedent parts constructed in a partial space of  input by utilizing the 
backpropagation type of  network. In NDF, the fuzzy inference rules are 
represented by the I F - T H E N  format. 

Rs: I F x  = ( x  I , x  2 . . . . .  xn) is A s, 

THEN Ys = NNs( x t ,  x2 . . . . .  xm),  

s =  1 ,2  . . . . .  r ;  m < n  (2) 

The number of  inference rules employed here is expressed by r,  A s represents 
a fuzzy set of  the antecedent part of  each inference rule, and NNs(X ~, 
x2," • . ,  x m) denotes a structure of  model function that is characterized by and 
M-layer backpropagation neural network for a given input ( x  I, x 2 . . . . .  Xm) 
and output y. The degree of  attribution of  input x = (x~, x 2 . . . . .  x n) to the 
antecedent part of  the sth inference rule is derived from the membership value 
of  fuzzy sets A s to the input x. Furthermore, the amount of  operations Ys of  
consequent parts is estimated for a case where a combination of  input variables 
(x~, x 2 . . . . .  Xm) is substituted in the input layer of  the backpropagation 
neural network. The number of  variables employed is m according to a 

X~ T 
R3 

X1 0 

Figure 1. Conventional fuzzy partition of 
X~ 

rules. 
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method for selecting the optimum model employing a backpropagation type of 
neural network (Takagi and Hayashi [4]). The estimated value is obtained by a 
calculation of the center of gravity for Ys (Sugeno and Kang [8]). A typical 
rule division performed by NDF is shown in Figure 2, which is a nonlinear 
division different from the rectangular divisions shown in Figure 1. 

The backpropagation type of neural network is constructed by a general type 
of processing units found in the neural system, and the processing unit in a 
neural network shares some of the physical properties of real neurons; the 
processing unit is called a neuron here. Figure 3 shows an example of 
fundamental layered backpropagation neural networks containing four layers, 
where the first layer is called the input layer, the fourth layer is the output 
layer, and the other layers are called intermediate layers. The structure of 
model function NN(x~, x 2 , ' " ,  x m) is characterized by M layers [u~ x u 2 
x . . .  x uM], where u i, i = l ,  2 . . . . .  M ,  are the numbers of neurons 
within the input, intermediate, and output layers, respectively. Figure 3 shows 
the structure of a backpropagation type of neural network consisting of four 
layers [3 x 2 x 2 x 2]. 

Next, let's explain how to determine membership functions in the antecedent 
part by using the neural network NNme m shown in Figure 4. The fundamental 
considerations made on the membership functions in the antecedent part are 
shown in Figure 4. For example, we consider the backpropagation type of 
neural network of which input and output layers are input the ith data 
( x i j ,  xi2),  i = 1 ,2  . . . . .  N ,  and the data attribution to the rule expressed by 
( R j ,  R 2, R3) ,  respectively. The estimated values of the backpropagation 
neural network are considered the membership values of fuzzy sets in the 
antecedent part because the estimated value represents the attribution of data to 
each rule. 

For an explanation for the NDF algorithm, refer to the NDF block diagram 
shown in Figure 5. The algorithm used to obtain the inference rules and the 
estimate y* for the ith input data xi, i = 1, 2 , . . ' ,  N is as follows. 

STEP 1 Select input variables X l ,  X 2 . . . . .  Xn ,  which are related to the control 

Figure 2. 

X2 

0 X1 

Proposed fuzzy partition of rules. 
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Figure 3. Example of neural network. 
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value y.  This is for an assumed case where the ith input-output data (y i ,  X i )  = 

(Yi, XiI,Xi2 . . . . .  Xin), i = 1 ,2  . . . . .  N,  are obtained and the input data x i j ,  

where j = 1 ,2  . . . . .  n, are the ith data of  input variable x i .  

STEP 2 Divide input-output data into r classes of  R~, where s = 1 , 2 , . . . ,  r. 
As mentioned before,  each partition is regarded as an inference rule R~, and 
the input-output data for each R s are expressed by (YT, x~), where i = 
1,2 . . . . .  N s, provided that N~ is a number of  input-output data for each R s. 

STEP 3 Determine membership functions in the antecedent part by using the 
neural network NNme m shown in Figure 5 provided that the structure of  the 
backpropagation neural network is M- layered  [n x u 2 x . . -  x uA4_ ~ z r ] .  

STEP 4 Determine models in the consequent part by using neural networks 
NN l, NN 2 . . . .  , NN r shown in Figure 5 provided that the structure of  each 
backpropagation type of  network NN s is M- layered  [ k  × u 2 × • • • x u M_ 
x 1], k = n, n - 1 . . . . .  1, and select the optimum model for each NN s. 

We propose the stepwise procedure for utilizing the backpropagation type of 
neural network for determining input variables in the consequent part. The 
stepwise procedure for utilizing the backpropagat ion type of  neural network is 
described as follows. 

STEP 4-1 Setting a condit ion at k = n,  the input data x i = 
(X i l  , Xi2 . . . . .  X i k ) ,  i = 1 , 2  . . . .  , N ,  are assigned for the input layer of  each 
NNs, and the output data Yi  is assigned for the output layer of  each NNs, 
where the input variables assigned for the input and output layers are expressed 
respectively by 
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N Nmem 

A n l e c e d e n t  

P a r t  

Y E s t i m a t i o n  

c 0 t  . . . .  . . . .  

-~z h e y ( I )  mey(2 )  

.5 

_ . J  J I ~ j 

i n p u t  V a r .  X ,  X~ X~ 

Figure 5. Block diagram of neural network driven fuzzy reasoning. 

I 
I ! 

m . y ( r )  

Qs = {xl ,  x2 . . . . .  xk} (3) 

and 

T, = {y} (4) 

where Qs represents a set of input variables assigned for the input layer of 
each backpropagation type of neural network NN~, and T~ represents a set 
of output variables assigned for the output layer of NN~. 

STEP 4-2 An estimation of e y  i for the input data x i ~ ,  x i 2  . . . . .  x i k  can be 
obtained after repeated learnings made on the backpropagation neural network 
NN,. However, the number of learnings is set at approximately 3000. Then the 
sum of mean squared errors of output data Yi and the estimate e y  i is calculated 
to obtain an evaluation value of J~ required for determining the input 
variables. 

J~, = ( Y i  - eY i  / N ,  s = 1 , 2  . . . . .  r (5) 
i = l  

STEP 4-3 In order to determine the correlation of input variables xy to the 
output variables y,  the input variable xy is temporarily removed from the set 
of input variables x t ,  x 2 . . . . .  x k .  The input data from which the input 
variable xj is removed, Xi l  . . . . .  x i j  ~, x u +  ~ . . . . .  X i k ,  where i = 
1,2 . . . . .  N,  are assigned to the input layer of the M-layer backpropagation 
neural network [k - 1 x u 2 x • .- x uM_~ x 1], and the output data yi are 
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assigned to the output layer. Then the estimate eyf for the input data 
X i l , ' ' ' ,  Xij-I, Xij+l . . . .  , xik can be obtained after the backpropagation 
learning. An evaluation value J~J-L required for determining the input vari- 
ables is derived by calculating the sum of  mean squared errors of  output data 
Yi for this estimate eyi: 

J~{ ' = ( ~-~" ( Y i -  eYi')2] I N ' i = ,  s = 1,2 . . . . .  r (6) 

The same calculations are carried out for the input variables other than Xj to  

obtain the evaluations J~J_ 1, j~2 1 . . . . .  J~J-J . . . . .  J~k_ I . The minimum value, 
j~cj, can be obtained by calculating 

j~c_, = minJ~S , j =  1 ,2  . . . . .  k (7) 
J 

Equation (7) shows that the evaluation of  J ~  z obtained by removing the input 
variables x~ from the set of  input variables takes a minimum value among 
equations J ~ ] l ,  j~2_j . . . . .  j ~ j ]  . . . . .  j~k l .  

STEP 4-4 Comparing the value of  J ~  ] of  Eq. (7) to the value of  J~ of  Eq. 
(5), the set of  variables Qs is altered as follows. 

Q~= { x , , x  2 . . . . .  Xc_,,x,.+, . . . . .  xk}, if J~'_, < J~ (8) 

Qs = { x , , x  2 . . . . .  x~}, ifJ~C,> J~ (9) 

When Eq. (8) is established, the sum of  the mean squared errors can be 
decreased by removing the input variables x c, and this means that the estimate 
ey, represents yj better than ey i. Thus, the correlation of  input variables x c to 
the output variables y is considered weak, and the input variables can be 
removed from the input variable sets Qs. As a result of  this, a set of  newly 
established input variables consists of  k - 1 input variables. 

On the other hand, the effectiveness obtained by removing input variables 
temporarily cannot be attained when Eq. (9) is established. This fact means 
that the input variables xc are strongly correlated to the output variables y ,  
and the number of  set of  input variables Qs is left unchanged as k. 

In cases where the input variables can be reduced, k is altered to n - 1, 
n - 2 . . . . .  1; step 4 is repeated until Eq. (9) can be established; and the 
procedures for reducing the input variables of  the backpropagation type of  
neural network NN s are completed until Eq. (9) can be established. 

Thus the backpropagation type of  neural network NN s having the final set of  
input variables expressed as Q~ = { x],  x2 . . . . .  Xr,,} obtained at the time the 
procedure is completed becomes an optimum backpropagation type of neural 
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network representing the structure of the consequent part of the rule R s. The 
same step procedure is conducted for each NNs to determine the consequent 
parts of all the inference rules. 

STEP 5 The estimate y* can be derived from the equation 

£ tzA (Xi,. Xi2 . . . . .  X,.) X meYi(S ) 
Y t  = * : '  . . . . .  

s - 1  

i =  1,2 . . . . .  N (10) 

where meYi(S  ) is an estimate obtained by the optimum backpropagation type of 
neural network NN s derived in step 4. 

Figure 5 shows that the estimate y* can be derived from the results obtained 
by conducting product operations between the membership values of the 
antecedent of each inference rules, i.e., #As(Xi l ,  Xi2 . . . . .  Xi,,) and the esti- 
mate of the consequent, i.e., meYi(S) ,  and by continuously conducting summa- 
tion operations between each pair of rules. Figure 5 shows, however, a case 
where a condition of I, LAs(Xil, Xi2 . . . . .  Xin ) = 1 is established. 

Although it is also possible to determine an overall nonlinear relationship by 
using only one backpropagation type of neural network, the determination of 
the overall input-output relationship by applying a backpropagation type of 
neural network for each partial space is considered more advantageous than 
employing only one backpropagation neural network for better clarification of 
overall nonlinear relationship. 

A P P L I C A T I O N  TO A N  I N V E R T E D  P E N D U L U M  SYSTEM 

The NDF we propose is capable of forming inference rules automatically, 
that is, the function is self-autotuning, and shown here is an inverted pendulum 
system to which a learning function that uses NDF is applied. In the algorithm 
employed for this experiment, four inputs and one output data are acquired by 
observing manual operating controls, and fuzzy inference rules and member- 
ship functions are then automatically constructed from the acquired data by 
using an NDF algorithm. 

Figure 6 shows the structure of an inverted pendulum system that consists of 
four elements: 

1. cart, which runs on a rail. 
2. pendulum that can rotate freely around an axis on the cart. 
3. Motor that drives the cart. 
4. Fixed pulleys and a belt system for combining the three parts listed 

above. 
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The pendulum angle apart from the perpendicular 0 degree and the distance 
from the original cart position are detected by the potentiometers a and b, 
respectively, shown in Figure 6. These values are digitized by an A/D 
converter and are fed to a personal computer wherein the velocities of inverted 
pendulum angle and the cart distance are derived from the four variables, 
pendulum angle, angular velocity, cart distance, and cart velocity by using 

an NDF algorithm. As the motor control signal derived by the personal 
computer takes a digital form, it is converted into an analog value through a 
D/A converter. 

The configuration of the inverted pendulum system and the control computer 
are as follows. 

Body of the inverted 
pendulum system 

Pendulum 
Drive force 
Sensors 

Microcomputer 
Program 

Length 1410 mm, width 400 mm, height 880 mm 
Length 400 mm, weight 40 g, diameter 4 mm 
25-W dc motor with gear ratio of 12.5:1 
Potentiometer to measure the distance from the 
original position of the cart, and another to measure the 
pendulum angle. 
CPU 80286 
C language, 21K bytes 

The inverted pendulum system has two control areas--a linear control area 
where the pendulum stands upright, and a nonlinear control area where the 
pendulum falls. We constructed an inverted pendulum system in the linear 

a b  

Personal c o l p u t e r  

C o n t r o l  ] 

Figure 6. Structure of inverted pendulum system. 
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control  area  by using a convent iona l  fuzzy control ,  and a control  mode l  in the 

nonl inear  control  area  by uti l izing N D F .  

Contro l  rules appl icable  to the inver ted  pendulum were  formula ted  accord-  

ing to an a lgor i thm deve loped  for cons t ruc t ing  the inference rules by applying 

N D F  descr ibed in the fo l lowing.  

STEP 1 Prepare  input-output  data. This  is pe r fo rmed  by an opera tor  who  tries 

to swing up the pendulum by m o v i n g  the cart in the right or  left direct ion on 

the rail by press ing e i ther  o f  the cor responding  cont ro l le r  buttons until the 

pendulum is brought  to its inver ted posi t ion,  and the fo l lowing  input-output 

data with a sampling per iod  o f  4 ms are recorded.  

OUTPUT VARIABLE 

y Moto r  control  signal (V) 

INPUT VARIABLES 

x j Dis tance f rom the or iginal  cart posit ion 

x 2 Veloc i ty  o f  x I ( c m / s )  

x 3 Pendu lum angle  (deg) 

x 4 Veloc i ty  o f  x 3 (deg / s )  

Approx ima te ly  1 0 0 0 - 3 0 0 0  data were  acqui red  f rom these manual  opera-  

t ions,  and f rom these,  the 98 input-output  data shown in Table  1 appl icable  to 

N D F  were  extracted.  

T a b l e  1. Input and Output  Data  o f  Inver ted  Pendulum System 

Input Data Output Data 

No. x I (cm) xe (cm/s) x 3 (deg) x 4 (deg/s) y [V] 

1 - 1.1482 0.0000 178.5074 0.0000 0.7597 
2 -0 .0201 8.5486 180.9129 34.5660 0.7421 
3 3.2197 29.9073 185.6439 34.5660 0.7617 
4 7.8338 38.4472 188.4660 0.0000 0.0039 
5 10.9510 4.2697 182.7386 - 121.0536 - 0.7168 
6 9.2718 - 21.3586 165.3085 - 155.6554 - 0.7968 
7 5.3319 - 38.4560 151.5283 - 69.1678 -0 .7519  
8 0.1432 -42.7261 150.9847 51.8840 - 0.7519 

93 7.9980 42.7261 85.663 - 380.4464 -0 .0136  
94 11.7713 4.2701 199.1743 - 639.8375 - 0.7265 
95 10.6843 - 17.0885 117.4961 - 622.5536 -0 .7519  
96 7.0135 - 42.7261 56.6514 -345 .8786  - 0.7519 
97 1.9891 - 38.4560 27.0170 - 138.3357 0.0039 
98 - 2.9937 - 34.1774 16.6419 - 51.8822 - 0.0019 
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STEP 2 Set two rules for the input-output data containing the data distributions. 

STEP 3 Determine the membership functions of the antecedent part. A three- 
layer [4 x 6 x 2] backpropagation type of neural network is employed here 
for determining the antecedent part construction, and the number of learnings 
is set at 1500. 

STEP 4 Determine the consequent part structure. A three-layer [k x 6 × 1], 
k = 4, 3, 2, 1, backpropagation type of neural network for determining the 
consequent part structure is employed here, and the number of learnings of 
each backpropagation type of network is set at 3500. 

By using a stepwise procedure for utilizing backpropagation type neural 
networks, we obtain 

J2 = 0.016 (11) 

~l, = min j i j (=  0.007), j = 1 , 2 , 3 , 4  (12) 
J 

Therefore, 

J~' < J] (13) 

By removing the input variables xj ,  we obtained Qs = { x2, x3, x4}- As 
for Qs = { x2, x3, x4}, the following can be obtained. 

j l l  = 0 . 0 0 7  ( 1 4 )  

~13 = min J~J(= 0.021), j = 1 , 2 , 3 , 4  (15) 

This means 

J213 > J~' (16) 

Thus, the number of input variables is not reduced, and the algorithm for 
rule 1 is completed by the second calculation process. The algorithm for rule 2 
is completed by the second calculation process in the same way. The inference 
rules consequently obtained by these are 

Rj: IFx  = ( x  I , x  2 , x  3 ,x4)  is A I, 

THEN y, = NNI(X 2 , x 3, x4) (17a) 

R2: IF x = ( x l ,  x2, x3, x4) is A2, 

THEN Y2 = NN2(x, ,  x2, x4) (17b) 

Photographs 1 and 2 show the swing-up motions of the pendulum controlled 
by fuzzy inference rules expressed by Eqs. (17a) and (17b). Photograph 1 
shows sequential motions as the pendulum swung from its stable equilibrium 
state to an inverted standstill state. The estimate y*  can be derived from Eq. 
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Photograph 1. Control of inverted pendulum system No. 1. 
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Photograph 2. Control of inverted pendulum system No. 2. 
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(10). The pendulum can be brought to its inverted position regardless of the 
cart position on the rail. Photograph 2 shows the other control of swing-up 
motion for given pendulum angles. 

An experimental study of the robustness of control performed by NDF was 
carried out by changing the parameters that govern the dynamic characteristics 
of the controlled object, and the length of pendulum was taken as a parameter 
governing the dynamic characteristics of the pendulum here. The initial 
position of the cart was set at the center position of the belt on which the 
inverted pendulum device is mounted, and the pendulum angle was set at 0 ° 
when it was hung down initially and + 180" is specified when the pendulum 
was at an inverted position. The angle was incremented for clockwise rotation 
and decremented for counterclockwise rotation. 

The inference rule was constructed for a case where the pendulum length 
was set at 40 cm, and Figure 7 shows the response of such a pendulum. 
Figures 8, 9, and 10 show the responses of pendulums 20, 30, and 50 cm long, 
respectively. These inference rules were constructed for a case where the 
pendulum length was set at 40 cm. The shifts of pendulum angle are shown by 
solid lines, and the changes of angular velocity are shown by broken lines in 
Figures 8-10. However, only the changes of pendulum angle and angular 
velocity until the pendulum comes to an inverted position, and no response 
after completion of inversion, are shown there. As for the learning of the 
inverted pendulum, the learning of the swing-up process was made for 
constructing an inference rule applicable to the process of a pendulum starting 
from a downward-hanging position and proceeding to a nearly inverted posi- 
tion. The inverted position is defined as a pendulum angle close to _+ 180", and 
its angular velocity is nearly zero at that time. 
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Figure 7. Angle and angle velocity of 40-cm long pendulum. 
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Figure 8. Angle and angle velocity of 30-cm long pendulum. 

As shown in Figure 7, the pendulum reached the - 180 ° position in 4.6 s 
after the start of control, attaining an angular velocity of about 0° /s ,  and the 
pendulum stood still at the inverted position. This is a natural consequence 
because the inference rules were established for a 40-cm long pendulum. 

Figure 8 shows a transient response of a pendulum 30 cm long. The 
pendulum was brought to its inverted position, showing a response similar to 
that obtained with the 40-cm pendulum, but the angle reached - 180 ° in 3.9 s. 
The overall controllable characteristics were similar to those of the 40-cm 
pendulum. 

In a case where the length of pendulum was set at 20 cm as shown in Figure 
9, a large velocity change was observed, and the angle became 180 ° in 6.2 s, 
attaining an angular velocity of about 0° /s .  Although the pendulum reached 
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Figure 9. Angle and angle velocity of 20-cm long pendulum. 
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Figure 10. Angle and angle velocity of 50-cm long pendulum. 

the inverted position and stayed there, the angular velocity was greater, and a 
longer lead-in time was required. 

Figure 10 shows the transient response obtained with a 50-cm pendulum, 
which could not be brought to its inverted position. As seen in Figure 10, the 
pendulum angle could not be brought to its ___ 180 ° position despite a longer 
lead-in time. The correlation between the dynamic characteristics of the 
pendulum and its length can be summarized as follows. 

1. By applying NDF to a pendulum system whose length is varied from 40 
to 20 cm, a stable operation to bring the pendulum to its inverted 
position became feasible despite the lead-in time required for its motion. 
In other words, the robustness of NDF is higher for shorter pendulum 
lengths. 

2. For longer pendulums, however, the suppression of deviations of the 
control system cannot be attained, and this means that relearning or 
additional learning is necessary for NDF applied to a longer 
pendulum. 

N E U R A L  NETWORK DRIVEN FUZZY R E A S O N I N G  W I T H  
L E A R N I N G  F U N C T I O N  (NDFL) 

Neural network driven fuzzy reasoning is unable to alter its inference rule 
when the environment for constructing its inference rule is dynamically 
changing. Thus, we propose a new algorithm that can adapt to adjust its 
inference rules for a change of environment. We call this algorithm a neural 
network driven fuzzy reasoning with learning function (NDFL). NDFL can 
obtain the optimal coefficients of linear equations in consequent parts by using 
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the pattern search method. The pattern search method is divided into two parts: 
the exploratory movement and the pattern movement (Hooke and Jeeves [9]). 
The exploratory movement is a process to determine the direction for an 
optimal solution by calculating values of  the evaluation function f .  The pattern 
movement is a process to move the searching point to the direction needed for 
an optimal solution. 

Now, we assume that the number of  searching parameters is m, the 
coordinates terminated the p - lth exploratory movement at the kth pattern 
search are expressed by Wp k = (w0 ~, w~ . . . . .  Wp k . . . . .  Wmk), and a unit vector 
that the value of  p th  is one is expressed by dp, where p = 1, 2 . . . . .  m. 
Let 's  explain both movements, i.e., exploratory movement and pattern 
movement. 

1) EXPLORATORY MOVEMENT 
The following procedure is taken from p = 1. If  

f k > o (18) ( Wp k + u~dp) < f (W p k ) ,  OZp 

is obtained, the p th  exploratory movement is a success, and Wff+ l = Wff -1- 
oL~dp is established for the p + Ith exploratory movement. If  this fails, 

- - c ~  is set, and the same operation is repeated. If  both fail, Wff+ l = W~ ~ p  - -  

k shows a range of  search. is established. Howver,  ap  

2) PATTERN MOVEMENT 
The coordinates terminated to mth exploratory movement at the kth pattern 

search are expressed by W~ = (w0 k, w~ . . . . .  wp k . . . . .  Wmk). Wff is called a 
base point at the kth pattern search. Pattern movement means that the 
following shift from the base point W~ to W k 

W X =  W~ + ( W ~ -  W f f - ' )  (19) 

A tuning of  the operation of  the consequent part of  the inference rule 
performed for minimizing the evaluation function f by applying a pattern 
search method is illustrated here by employing the inference rule R s, 

Rs: IF x = ( x  I . . . . .  x . )  is A s 

THEN y~ = Ws~ + w~x,  + " ' "  + wf, x , ,  

s = 1 ,2  . . . . .  r (20) 

where A s represents a fuzzy set in the input space of  the antecedent, and 
Wfo . . . . .  w~,, are coefficients for adjusting by the pattern search method. 
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Given the ith input data X i = ( x ,  . . . . .  x i , , ) ,  the estimate y* can be 
derived from the equation 

 As(x,, . . . . .  X,n) X (Wso + ws,  x , ,  + " "  +WsnX,n) 
y , =  s = l  

r 

Z #As(Xi, . . . . .  Xin) 
s = l  

i = 1 ,2  . . . . .  N (21) 

A fundamental structure of  this method is shown in Figure 11. This shows 
that the form of fuzzy set A s of  the antecedent is determined by a backpropa- 
gation type of  neural network model NNmem, and a pattern search is made to 
improve the amount of  operation W s o , . . . ,  wsn for the evaluation function f to 
attain an optimum value. 

The steps of this algorithm are explained below. 

STEP 1 Divide input-output data x i = ( X i l , . . .  , Xin ) into r classes of  R s, 

where s = 1 , 2 , . . . ,  r. The input-output data for each R s are expressed by 
( y ~ ,  x ] )  = (YT ,  x ] l ,  x]2 . . . . .  x ]n) ,  where i = 1,2 . . . . .  N s, provided that 
N s is a number of  input-output data for each R s. NN . . . .  in Figure 11 conducts 
backpropagation learning in the same way as step 2 of  the NDF algorithm. 
After conducting a backpropagation learning, the estimated value of  the output 
represents the membership value of  fuzzy sets A s of  each rule. 

STEP 2 The initial values W°so, • • - ,  wOn of  the coefficients of  equations in the 
consequent parts required for the search are set. 

STEP 3 The kth base point in the pattern search method is represented by 
(Wo*, w , * , . .  * * * . . . . .  w,*n, = . ,  w p  . . . . .  w m)  = ( W l o ,  

W2ko, , W~ . . . . . .  Wrko . . . . .  Wrkn). The kth exploratory movement is taken 
from W l k =  W~. 

k is reset STEP 4 If whole exploratory movements fail, an absolute value of  C~p 
to a smaller value. However,  if 

k I < c (22) max ] C~p = 
P 

is obtained, a procedure of  algorithm is terminated, where E is a threshold to 
stop the algorithm. 

STEP 5 The pattern movement from the base point W~ to W k is taken by 
using Eq. (19). After the pattern movement, the exploratory movement is taken 
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from WI k = W k, and WB T M  = Wm*÷l is set after the exploratory movement. 

STEP 6 If 

f( W~ +l) < f(Wff) (23) 
is obtained, go to step 5 as k = k + 1. If it fails, go to step 4. 

A N  A P P L I C A T I O N  TO S E C O N D A R Y  F U N C T I O N  I D E N T I F I C A T I O N  

To verify the effectiveness of  the NDFL algorithm, an identification of  a 
simple secondary function is conducted for a case where the input-output data 
are both the input and output of  ( x ,  y )  shown in Figure 12. 

X ~ 

tit 

~lt llt~ 11¢ ~ S  ~S I ~  1 t  lit 

lit )S  ~ Z lit ~'~ I~ llg 

I , I I i I I I I I t I 

Figure 12. Input and output data for secondary function identification. 

I 
X 
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The following assumptions are made for N D F L  algorithm application. 

1. Based on the distributions of  x-axis  input data, four inference rules are 
set. 

2. The inference rules are set as follows. 

Rs : IF X is As  THEN yks = Ws~ + Ws~ x 

s = 1 ,2  . . . . .  4 (24) 

l i t  

j 

I l I I I l I I I I 

Figure 13. Teaching based on teacher's data. 

I 
x 
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3. The neural network for determining the antecedent part of  the fuzzy 
inference rule is set as a three-layer [1 × 5 × 4], and the number of  
learnings is set at 550. 

4. d~ is reduced from 1.0 by using d~ = (1/2) g, g = 0, 1, 2 . . . . .  and a 
threshold ~ is set as ~ = 0.01. 

5. The evaluation function f is set as a sum of  mean squares of  errors 
between output value and estimated value. 

As shown in Figure 13, a teaching based on the teacher's data (x~, y~), 
where t = 1, 2 . . . . .  25 is made first. The solid line in Figure 13 shows the 
teaching of  the teacher 's data. The initial values wOo, w°t of  the coefficients of  
equations in the consequent parts are derived by using the following set of  
equations. 

Ws°j = ~ - -  4 (25a) 
=1  X t +  I - -  X t 

wOI = Y t  2 
= 1 X t +  I - -  X s  

s =  1 ,2  . . . . .  4,  t = 1 ,2  . . . . .  25 

where the treacher's data (x~, y , )  are obtained from the solid line in Figure 
13. The search is commenced by assigning coefficients derived from the 
teacher's data to the initial values of  search variables of  the consequent of  the 
fuzzy inference rule. Figure 14 shows an estimated curve obtained by this 
search, with reasonable estimated values representing the given input-output 
data. 

The inference rules consequently obtained are 

Rt:  IF x is A t 

THEN Yt = 2 . 0 9  + 2 .87x  

R2:  IF x is A z 

(26a)  

THEN Ye = 20.61 - 3 .76x  (26b) 

R3: IF x is A 3 

THEN Y3 = - 1 2 . 1 3  + 3 . 1 2 x  (26c) 

R4: IF x is A 4 

THEN Y4 = - 4 1 . 3 9  + 6 . 8 1 x  (26d) 

When part of  the given input-output data are altered assuming a case where a 
change is made in the inference environment, NDFL is still applicable for 
constructing an inference rule. Figure 15 shows an estimated curve obtained by 
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F'igure 14. Curve estimated by NDFL. 

NDFL after the input-output data are altered, and also shows a reasonable 
estimated curve as in the case illustrated in Figure 14. 

As shown in the above, NDFL can be used to construct inference rules 
quickly and precisely even if the environment for constructing an inference 
rule is dynamically changing. 

CONCLUSION 

Whereas conventional fuzzy reasoning is associated with inherent tuning 
problems, NDF and NDFL are, when input-output variables are given, capable 
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Figure 15. Curve estimated by NDFL after input-output data are altered. 

of determining optimum inference rules and membership functions by utilizing 
the nonlinearity of a backpropagation neural network and its learning 
capabilities. 

To verify the effectiveness of NDF, it was applied to an experimental 
pendulum system wherein the pendulum was brought to its inverted standstill 
position starting from a downward-hanging position. The length of the pendu- 
lum was altered to confirm its effects on the NDF control characteristics. 
Furthermore, NDFL was applied to identify a simple secondary function to 
verify its usefulness, and a satisfactory result was obtained. 

Since this method is capable of deriving an inference rule by using a 
learning function of a backpropagation type of neural network, it was possible 
to introduce a learning function into fuzzy reasoning. 
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