脳内初期視覚モデルによる方位選択性と知識再構築 Orientation Selectivity and Knowledge Restructuring by Computational Model in Early Vision of Brain

林勲

Isao Hayashi **関西大学 総合情報学部** Faculty of Informatics, Kansai University

Abstract TAM (Topographic Attentive Mapping) network is a biologically-motivated model with Gabor function type receptive fields. In this paper, we discuss a new TAM network structure with extensive receptive fields and a restructuring method of fuzzy knowledge acquired from the network structure. We also show the usefulness of TAM nework using some examples.

1. はじめに

網膜での視細胞の視覚情報は受容野に対応した神経節 細胞で処理され,外側膝状体を介して,第一視覚野で対象 画像の方位選択性が検知される.対象の知覚はより上位の 視覚前野以降で認識される[1].この初期視覚の処理過程 は,Hubel-Wieselの階層仮説に代表され,多くの有用な 視覚系モデルが提案されている[2-4].特に,Williamson が提案したTAM(Topographic Attentive Mapping)ネッ トワーク [4,5] は有用である.TAM ネットワークの構 造は入力層,基盤層,カテゴリー層,出力層の4層から なり,第一次視覚野から視覚前野以降までを模擬してい る.入力層では,受容野を想定し方位選択成分が入力さ れ,基盤層のシナプス荷重は受容野からの方位選択成分 を分布型で学習する.カテゴリー層では抑制性ノードを 構成しており,学習された受容野の方位選択性分を全結 合している.クラス層では,教師信号を与える.

一方,人間の視細胞には,単純型細胞,複雑型細胞 超複雑型細胞が存在する.この受容野の視覚構造を表現 するモデルに,空間分布型の関数モデルであるガボール 関数 [6-9] がある.ガボール関数はガウス関数と正弦・ 余弦関数から構成され,任意の周波数成分を抽出する フィルタリング機能をもつ.著者らは,ガボール関数の 受容野構造を導入した視覚系モデル [5] として,改良型 TAM ネットワーク [4,10] を提案している.このモデル は学習後のプルーニング機能を有し,ネットワーク構造 を表現したファジィ知識を抽出することができる.

本論文では,改良型 TAM ネットワークの受容野入力 層をさらに改良し,対象画像全体の全方位を検出する 広範囲の受容野構造を新たに設け,画像全般の全体の 方位選択性を検出する新たなモデルを提案する.また, Carpenterら [11] の知見から,ネットワークを学習部と オブジェクトクラスの知識記憶部とに分離し,基盤層か らクラス層の多層構造からの獲得知識を再構築するア ルゴリズムを定式化する.具体的には,ガボール関数に よって受容野の輝度情報から対象画像の16方位選択成 分を抽出し,そのエッジ特徴画像に対してより広範囲の 方位選択性を抽出して,既存画像との比較で回転特性を 推定する.第一視覚野以降では,この回転特性に対応し た特徴マップを構成して,TAM ネットワークの学習機 能により対象画像を認識する.また,ファジィ情報量を 用いたプルーニング手法によって,TAM ネットワーク の構造からファジィルールを獲得し,ファジィ知識を蓄 積,再構築する[12].ここでは,文字認識と画像判別の 数値例を用いて,受容野入力構造と知識の再構築機能を もつTAM ネットワークの認識率と頑健性について議論 する.

2. Simple TAM ネットワーク

Williamson によって提案された TAM ネットワーク [4,5] の構成を図 1 に示す.ガボール関数を導入した改 良型 TAM ネットワークと区別するため,ここでは,こ のモデルを Simple TAM ネットワークと呼ぶ.カテゴ リー層では,特徴マップ f_{ih} と学習荷重 w_{jih} との活性 値 x_{ji} を計算して,クラス層への出力 y_j を得る.

$$y_j = \prod_{i=1}^M x_{ji} = \prod_{i=1}^M \frac{\sum_{h=1}^L f_{ih} w_{jih}}{1 + \rho^2 b_{ji}}$$

ただし, ρ はビジランスパラメータであり, b_{ji} は抑制 荷重である.

出力値 K は次式より計算される.

$$K = \{k | \max_{k} z_{k}\} = \{k | \max_{k} \sum_{j=1}^{N} y_{j} p_{jk}\}$$

ただし, *p*_{ik} は学習荷重である.

Simple TAM ネットワークはカテゴリー層のノード増 幅機能をもつ.いま, K^* をクラス層での正しい教師値 とする. $K \neq K^*$ の場合には,ビジランスパラメータ ρ は初期値から $z_{K^*}/z_K \ge OC$ の条件が満足されるか最 大値になるまで上昇する.最大値になった場合には,カ テゴリー層のノードが1個分増加する.

Fig. 1: TAM Network

一方, $z_{K^*}/z_K \ge OC$ を満足する場合には,学習モードに入り,学習荷重 w_{jih} , p_{jk} , b_{ji} を次式で更新する.

$$\Delta w_{jih} = \frac{\alpha y_{j}^{*}(1-\lambda^{1/M})(f_{ih}-w_{jih})}{(\alpha-1)\lambda^{1/M}+n_{j}}, \lambda \in (0,1)$$

$$\Delta p_{jk} = \frac{\alpha y_{j}^{*}(z_{k}^{*}-p_{jk})}{\alpha+n_{j}}$$

$$\Delta b_{ji} = b_{j}^{(rate)}y_{j}^{*}(x_{ji}-b_{ji})$$

$$\Delta n_{j} = \alpha y_{j}^{*}(1-n_{j})$$

$$y_{j}^{*} = \frac{\prod_{i=1}^{M} x_{ji} \times \sum_{k=1}^{U} z_{k}^{*}p_{jk}}{\sum_{j'=1}^{N} \prod_{i=1}^{M} x_{j'i} \times \sum_{k=1}^{U} z_{k}^{*}p_{j'k}}$$

$$z_{k}^{*} = 1 \text{ if } k = K^{*}; \quad z_{k}^{*} = 0 \text{ otherwise}$$

ただし, $b_j^{(rate)}$ は学習定数であり, α と λ は係数, y_j^* はカテゴリー層へのフィードバック信号である.

パラメータの調整はネットワークヘデータが逐次的に 投入されるごとに行い,学習データを1エポックとして 数エポック回数分の学習を行う.

2. 受容野構造をもつ TAM ネットワーク

受容野構造をもつ改良型 TAM ネットワークの構成を 図 2 に示す.第一視覚野からクラス層までを構成する Simple TAM ネットワークに対して,網膜層から LGN 層までの新たな構造を付加している.網膜層や LGN 層 では,対象画像をガボール関数型受容野で処理し,16 方 位の方位選択成分を抽出する.得られたエッジ特徴画像 に対し,広範囲受容野構造を適用して,より広範囲な方 位選択成分を抽出する.この広範囲な方位選択成分から, 第一視覚野での16 方位の輝度分布の特徴マップを得る. ここで,対象画像の回転特性は広範囲方位選択成分から 得られ,第一視覚野での16 方位の特徴マップを変更す る.得られた特徴マップから,基盤層,カテゴリー層, クラス層での学習機能により視界画像を認識する(図1 を参照). 2次元正弦関数型ガボール関数 G(x,y) は次のように 定義される.

$$G(x,y) = Ke^{-\frac{1}{2}\left(\frac{(x-\mu x)^2}{\sigma_x^2} + \frac{(y-\mu y)^2}{\sigma_y^2}\right)} \times \sin\left(2\pi f_x x \cos\theta + 2\pi f_y y \sin\theta + \phi\right)$$

ただし, K は振幅, (μ_x, μ_y) はガボール関数の中心, σ_x と σ_y は標準偏差, $f_x \ge f_y$ は周波数を表す.図3にガ ボール関数の例を示す.

Fig. 2: TAM Network with Extensive Receptive Field

Fig. 3: Gabor Function

次に,方位選択成分の検出過程を図4に示す.いま, 視界の原画像の横幅と縦幅をそれぞれ, R_H pixels と R_V pixels とする.原画像 $O(p,q), 0 \le p \le R_H, 0 \le$ $q \le R_V$ における受容野の*i*番目の方位選択成分 $C_i^1(x,y), i =$ $1, 2, \cdots 16$ は,次の畳み込み計算により計算される.

$$C_i^1(x,y) = \sum_{q=1}^{R_V} \sum_{p=1}^{R_H} G_i(x-p, y-q) \times O(p,q)$$

いま,第1番目の方位選択成分が得られたとする.この第1番目の方位選択成分に対して,より広範囲な受容

Fig. 4: Gabor Filtering Process

野を用いて,第2段目の畳み込み計算を行い,第I番目のみの方位選択成分 $C_{t}^{2}(x, y)$ を計算する.

$$C_{I}^{2}(x,y) = \sum_{q=1}^{R_{V}} \sum_{p=1}^{R_{H}} G_{I}(x-p,y-q) \times C_{I}(p,q)$$

TAM ネットワークの特徴マップ層での *i* 番目の特徴 マップは,この方位選択成分の輝度を各方位ごとに正規 化して構成される.

$$f_{ih} = \frac{\sum_{\{x,y|O_i(x,y)=h\}} C_i^2(x,y)}{\sum_{a=1}^{R_V} \sum_{x=1}^{R_H} C_i^2(x,y)}, \quad h = 1, 2, \cdots, 256$$

ただし, TAM ネットワークの学習後に, 評価用の方位 選択成分画像として, $C^2_{i,new}(x, y)$ が得られた場合, そ の $C^2_{i,new}(x, y)$ の特徴マップ f_{ih} は次式の角度 r により 入れ替える.

$$r = \min_{i} \left(\frac{\sum_{x} \sum_{y} C_{i,new}^2(x,y)}{R_H \times R_V} - \frac{\sum_{x} \sum_{y} C_I^2(x,y)^2}{R_H \times R_V} \right)$$

3. 文字認識による例題

広範囲受容野をもつ TAM ネットワークの有効性を確認するため,アルファベットの文字認識を行った.入力 画像として電子タブレットによって作成された画像デー タを用いる.画像の大きさを15 pixels×15 pixelsとす る.ここでは,次の2点から TAM ネットワークの有用 性を評価した.

- 回転特性をもたない改良型 TAM ネットワークを 用いて,全26文字のアルファベット認識,回転文 字認識,斜体文字認識を行う.
- 回転特性をもつ改良型 TAM ネットワークを用いて,回転文字認識を行う.

TAM ネットワークの学習パラメータは次の通りである.

L	=	255	$ ho^{init}$	=	0.0
OC	=	0.8	$ ho^{step}$	=	0.1
α	=	0.01	$ ho^{max}$	=	100.0
λ	=	0.33	$b_{i}^{(rate)}$	=	0.0000001
μ_x	=	0.0	$\check{\mu_y}$	=	0.0
σ_x	=	1.99	σ_y	=	1.92
f_x	=	0.127	f_y	=	0.127
ϕ	=	90.0	\bar{K}	=	1.0

まず,回転特性をもたないTAMネットワークに対す る特性を示す.学習用画像を図5に示し,全26文字のア ルファベット認識率の結果を図6に示す.認識率はデー タ順序を変えた30回の平均値を表している.学習回数 (エポック数)を2回と5回として比較した.どちらのエ ポック回数においても,ほぼ60%以上の認識率を示し, 高い認識率を確保していることがわかる.しかし,回転 文字認識と斜体文字認識に対しては,頑健性が高い文字 と低い文字が混在し,回転特性に弱いことがわかった. この原因として,受容野構造が単層であり,十分な方位 選択性を確保できず,また,回転特性に対する機能も存 在していないことが考えられる.

次に,回転特性をもつ TAM ネットワークに体する特 性を示す.ここでは,2種類のアルファベット'A'と'B' の学習画像に対して,回転角度を与えた評価画像を準備 し,方位選択性の回転特性に対する依存性を検分した. 学習用画像を図7に示し,評価用画像を図8に示す.回 転画像は学習用画像に対して,22.5°ずつの回転を与え た.評価用画像の認識率を表1に示し,それぞれの文 字の認識率を図8に示す.上段の値は回転特性をもたな いTAM ネットワークの認識率であり,下段の値は回転 角度特性をもつ TAM ネットワークの認識率である.認 識率はデータ順序を変えた30回の平均値を表している. 表1と図8から,文字'B'に対して認識率が向上してお り,全体の認識率も良くなっていることがわかる.しか し,各文字に対しては,十分に認識できていない文字も あり,まだ検討の余地がある.

A	В	С	D	Ε	F
G	Н	Ι	J	Κ	L
Μ	Ν	0	Ρ	Q	R
S	Т	U	V	W	Х
Y	Ζ				

Fig. 5: Training Images

4. TAM ネットワークからの知識獲得

改良型 TAM ネットワークからファジィ知識を獲得し て知識を再構築するアルゴリズムの概念図を図9に示 す.基盤層のシナプス荷重では,受容野の処理量が分布

Fig. 6: Results of All Alphabets

Table 1: Recognition Rate

	Char.'A' (%)	Char.'B' (%)	Total (%)
TAM without			
Rotation	96.04	12.71	54.38
TAM with			
Rotation	98.33	30.42	64.38

型で学習され,カテゴリー層の抑制性ノードではその 受容野を結合している.基盤層の分布型シナプス荷重を ファジィ数とすれば,カテゴリーノードはファジィルー ルを表現しているといえる.学習後のTAMネットワー クは全結合されており,不必要なリンクとノードを削除 するプルーニング手法を用いることにより,TAMネッ トワークから必要なファジィルールを獲得することがで きる.リンクとノードのプルーニングは次の手順にした がって行う.

[Step 1] 学習データ D に対して,第 i 番目の属性の情報 量 H(i) を計算する.

[Step 2] $i^* = \{i | \max_i H(i)\}$ を選択し, $I^* = \{i^*\}$ とする. [Step 3] しきい値 η と評価データに対して,次の条件を 満足した場合に第 j 番目のカテゴリーと第 $k' \neq k$ 番目 のクラスとの結合,第 $i' \notin I^*$ 番目の属性との結合を削 除する.

Fig. 7: Training Images of 'A' and 'B'

36.7 100.0	100.0 100.0	100.0 100.0	100.0 100.0	100.0 100.0
36.7 100.0	100.0 100.0	100.0 100.0	100.0 100.0	100.0 73.3
100.0 100.0	100.0 100.0	100.0 100.0		
	\sum_{iii}	0.0 6.7	10.0 3.3	0.0 0.0
0.0 83.3	0.0 100.0		O	0.0 53.3
\diamond	\Diamond	\Diamond		
	36.7 100.0 36.7 100.0 36.7 100.0 100.0 100.0 0.0 0.0 0.0 83.3	36.7 100.0 36.7 100.0 36.7 100.0 36.7 100.0 36.7 100.0 36.7 100.0 36.7 100.0 36.7 100.0 36.7 100.0 36.7 100.0 36.7 100.0 36.7 100.0 36.7 100.0 36.7 0.0	$\sum_{36.7}^{36.7}$ $\sum_{100.0}^{100.0}$ $\sum_{100.0}^{100.0}$ $\sum_{36.7}^{36.7}$ $\sum_{100.0}^{100.0}$ $\sum_{100.0}^{100.0}$ $\sum_{36.7}^{36.7}$ $\sum_{100.0}^{100.0}$ $\sum_{100.0}^{100.0}$ $\sum_{00.0}^{36.7}$ $\sum_{100.0}^{100.0}$ $\sum_{100.0}^{100.0}$ $\sum_{0.0}^{0.0}$	$\sum_{36.7}$ $\sum_{100.0}$ $\sum_{100.0}$ $\sum_{100.0}$ $\sum_{100.0}$ $\sum_{100.0}$ $\sum_{100.0}$ $\sum_{100.0}$ $\sum_{100.0}$ $\sum_{100.0}$ $\sum_{0.0}$ $\sum_{0.3}$ $\sum_{0.0}$ $\sum_{0.0}$ $\sum_{0.0}$ $\sum_{0.0}$ $\sum_{0.3}$ $\sum_{0.0}$ $\sum_{0.0}$ $\sum_{0.0}$ $\sum_{0.0}$ $\sum_{0.0}$ $\sum_{0.0}$ $\sum_{0.0}$ $\sum_{0.0}$ $\sum_{0.0}$

Fig. 8: Checking Images

$$G_{jk} = \frac{\sum_{s \in \psi_k} \gamma_{js} \times p_{jk}}{\sum_{s=1}^R \gamma_{js} \times p_{jk}} \ge \eta$$

[Step 4] しきい値 θ と評価データに対して,次の条件を 満足した場合に,第j番目のカテゴリーとi及び $i' \notin I^*$ 番目の属性との結合を削除する.

$$\frac{1}{R}\sum_{s=1}^{R}\gamma_{js} < \theta$$

[Step 5] しきい値 ξ と評価データに対して,次の条件を満足した場合に,第K番目のクラスと第 $j' \neq j$ 番目のカテゴリーとの結合を削除する.ただし, $\Gamma_K = \{s | K = K^*, K = \max_k \sum_{j=1}^N y_j p_{jk}\}$ である.

$$\varphi_{jK} = \frac{\sum_{s \in \Gamma_K} \gamma_{js} \times p_{jK}}{\sum_{j=1}^N \sum_{s \in \Gamma_K} \gamma_{js} \times p_{jK}} \ge \xi \tag{1}$$

[Step 6] 全結合が削除されたノードを削除する. [Step 7] ステップ2において,全ての属性が選択される まで,ステップ1からステップ5までを繰り返す.

アルゴリズム終了後, I^* により各属性の重要度が表現され, φ_{jk} により各カテゴリーの重要度が表現される. なお,TAM ネットワークの処理過程はファジィ推論と同じであるので,不必要な結合やノードが削除されたネットワークは,前件部のファジィ集合,後件部の実数が調整されたファジィルールを表し,カテゴリー層のノードはそのファジィルール数を表している.

Fig. 9: Knowledge Restructuring Type TAM Network

5. 視覚前野からの知識の再構築

プルーニング手法によって TAM ネットワークから獲 得されたファジィルールは次の形式でファジィ知識部に 格納される.

- $r_1: \quad \text{if } f_1 \text{ is } z_{11} \text{ and } \cdots \text{ and } f_M \text{ is } z_{1M}$ then $C_1 = o_{11}, \cdots, C_U = o_{1U}$
- $r_2: \quad \text{if } f_1 \text{ is } z_{21} \text{ and } \cdots \text{ and } f_M \text{ is } F_{2M}$ $\text{then } C_1 = o_{21}, \cdots, C_U = o_{2U}$ \vdots $r_j: \quad \text{if } f_1 \text{ is } z_{j1} \text{ and } \cdots \text{ and } f_M \text{ is } z_{jM}$
- then $C_1 = o_{j1}, \dots, C_U = o_{jU}$:
- r_N : if f_1 is z_{N1} and \cdots and f_M is z_{NM} then $C_1 = o_{N1}, \cdots, C_U = o_{NU}$

ここで, z_{ji} $j = 1, 2, \dots, N$, $i = 1, 2, \dots, M$ は TAM ネットワークの重み w_{ji} であり, メンバーシップ関数で ある.また,実数 o_{jk} は出力ノードの重み p_{jk} である. なお,ファジィルールは (1) 式の φ_{jk} の値により並び替 える.

$$C_{1}: \quad r_{1}(\varphi_{11}) \geq r_{2}(\varphi_{21}) \geq \cdots \geq r_{N}(\varphi_{N1})$$

$$C_{2}: \quad r_{1}(\varphi_{12}) \geq r_{2}(\varphi_{22}) \geq \cdots \geq r_{N}(\varphi_{N2})$$

$$\vdots$$

$$C_{U}: \quad r_{1}(\varphi_{1U}) \geq r_{2}(\varphi_{2U}) \geq \cdots \geq r_{N}(\varphi_{NU}).$$

ファジィ知識部では、"クラス"と"ケース"の概念を 用いる.ケースとは、TAM ネットワークから獲得され たファジィルールを表現する.しかし、類似な内容の複 数のケースはグループごとにまとめられ、そのグルー プを構成する名称としてクラスが付与される.図10に 例題を示す.2つのクラス"Cups"と"Glasses"が存在 し、"Cups"クラスには、3つのケースが属しており、 "Glasses"クラスには2つのケースが属している.なお、 ここでは、ケースのことをファジィケースと呼ぶ.

Fig. 10: Example of Knowledge Part

さて, TAM ネットワークから獲得されたファジィルー ルをファジィ知識部の各クラスに記憶させるとき,現存 するファジィケースとの類似度を定義する必要がある. ファジィルールとファジィケースとの類似度を次の3種

類の指標で定義する.

1)
$$\Omega = \begin{cases} -: & -\tau < I_1^* < 0 \\ +: & 0 \le I_1^* < \tau \\ F: & |I_1^*| \ge \tau \end{cases}$$
$$I_1^*(W, Z) = \{I_1 \mid \min_{Case} |I_1|\}$$
$$I_1(W, Z) = \frac{1}{UNL} \sum_{k=1}^U \sum_{j=1}^N \sum_{i=1}^{M+1} \sum_{h=1}^L \log \frac{\mu_{w_{ji}}(f_{ih})}{\mu_{z_{ji}}(f_{ih})}$$
(2)

2)
$$\Omega = \begin{cases} -: \max_{\{-,+,F\}} count_{k,j} \ \omega = \{-\} \\ +: \max_{\{-,+,F\}} count_{k,j} \ \omega = \{+\} \\ F: \max_{\{-,+,F\}} count_{k,j} \ \omega = \{F\} \\ \omega = \begin{cases} -: -\tau < I_2^* < 0 \\ +: \ 0 < I_2^* < \tau \\ F: \ |I_2^*| \ge \tau \end{cases}$$

$$I_2^*(W,Z) = \{I_2 \mid \min_{Case} |I_2|\}$$

$$I_2(W,Z) = \frac{1}{L} \sum_{i=1}^{M+1} \sum_{h=1}^L \log \frac{\mu_{w_{ji}}(f_{ih})}{\mu_{z_{ji}}(f_{ih})} \qquad (3)$$

$$\Omega = \begin{cases} -: \max_{\{-,+,F\}} count_{k,j\in N'} \ \omega = \{-\} \\ +: \max_{\{-,+,F\}} count_{k,j\in N'} \ \omega = \{+\} \end{cases}$$

3)
$$\Omega = \begin{cases} +: \max_{\{-,+,F\}} count_{k,j\in N'} \omega = \{+\} \\ F: \max_{\{-,+,F\}} count_{k,j\in N'} \omega = \{F\} \end{cases}$$
$$\omega = \begin{cases} -: -\tau < I_3^* < 0 \\ +: 0 < I_3^* < \tau \\ F: |I_3^*| \ge \tau \end{cases}$$
$$I_3^*(W,Z) = \{I_3 \mid \min_{Case} |I_3|\}$$
$$I_3(W,Z) = \frac{1}{L} \sum_{i=1}^{M+1} \sum_{h=1}^L \log \frac{\mu_{w_{ji}}(f_{ih})}{\mu_{z_{ji}}(f_{ih})}$$
(4)

ただし, $\mu_{w_{jM+1}}(f_{M+1}) = p_{jk}$ であり, $\mu_{z_{jM+1}}(f_{M+1}) = o_{jk}$ である.また, " $count_{k,j} \omega$ "は, クラス $k \ge j$ のおける ω の個数を表す.さらに, $N' \le N \ge \tau$ はしきい値である.

ファジィ知識を再構成するためのアルゴリズムを下記 に示す.

[Step 1] φ_{jk} により TAM ネットワークのファジィルー ルを並び替える .

[Step 2] (2)~(4) 式により類似度を計算する.

[Step 3] $I_i^*(W,Z) = \{I_i(W,Z) \mid \min |I_i(W,Z)|, i = 1,2,3\}$ を満足するファジィケースを求める.

[Step 4] τ をしきい値とし, $|I_i^*(W, Z)| \ge \tau$ を満足する 場合には, TAM ネットワークから獲得したファジィルー ルは新しいクラスの新しいファジィケースとして登録さ れ, TAM ネットワークの学習は継続される.

[Step 5] $0 \le I_i^*(W, Z) < \tau$ の場合には,ファジィルール は既存の $I_i^*(W, Z)$ を満足するクラスの新しいファジィ ケースとして登録される.TAM ネットワークの学習は 継続される.

[Step 6] $-\tau < I_i^*(W, Z) < 0$ の場合には,そのファジィ ルールは $I_i^*(W, Z)$ のファジィケースと同等であるとみな し, $I_i^*(W, Z)$ のファジィケースの $b_{ji}, w_{ji}(z_{ji}), p_{jk}(o_{jk})$ を初期値として,TAM ネットワークを再学習する.学 習終了後,獲得されたファジィルールを既存の $I^*_i(W,Z)$ のファジィケースと交換する.

6. 判別問題による例題

ファジィ知識の再構築の例を図 11 に示す.3 種類の データが TAM ネットワークに投入されたとき, TAM ネットワークから獲得されるファジィルールについて検 証する.なお,ここでは,類似度の指標は I1を用いる. TAM ネットワークから獲得されたファジィルールはファ ジィ知識部に記憶される.各データは,"△"と"•"の 2つのパターンを持つ.第1と第3データは類似したパ ターン分類であり,第2データのそれとは異なる.

Fig. 11: Procedure of Fuzzy TAM Network

Table 2: Correct Rate and Categories

	Correc	et Rate	Categories		
		Fuzzy		Fuzzy	
	TAM	TAM	TAM	TAM	
Data 1	97.5%	97.5%	4	4	
Data 2	80.0%	80.0%	5	5	
Data 3	80.3%	-	7	—	
Data 3					
after relearning		97.5%	-	6	
Checking Data	50.0%	60.0%	7	5	

まず,第1データからのファジィルールがファジィケース "Case 1" として登録される.次に,第2データのファ

ジィルールとファジィケース "Case 1" との類似度が計 算され, $I_1^*(2,1) = 13.5$ と得られる. $\tau = 10.0$ と設定さ れており,第2ファジィルールは新たなファジィケース "Case 1"として登録される.第3データのファジィルー ルが獲得され,第1と第2のファジィケースとの類似度 が計算される. $I_1(3,1) = -2.84$, $I_1(3,2) = -1.88$ で あり, $I_1^*(3,1) = -1.88$ であるので,第1ファジィケー スの b_{ji} , $w_{ji}(z_{ji})$, $p_{jk}(o_{jk})$ を初期値として,TAM ネッ トワークを再学習する.学習後のTAM ネットワークの ファジィルールが第1ファジィケースと交換され,新た な第1ファジィケースとして登録される.

ファジィ知識の再構築の有用性を示すため,第1デー タと同じデータを評価データとして投入し,従来のTAM ネットワークとの正解率を比較した.結果を表2に示す. 従来のTAM ネットワークの正解率が50.0%,カテゴ リー層ノード数が7に対し,ファジィTAM ネットワー クの正解率は60.0%,ノード数は5と得られ,本手法の 有用性が示せた.

Fig. 12: Circle Image and Square Image

Fig. 13: Ellipse Image

次に,画像の類似比較の例を示す.図13の(a)に楕 円の画像を示す.この画像が図12の(a)の円画像か(b) の四角画像かを判別する.ただし,類似のための比較は, 元画像で比較するのではなく,TAM ネットワークから 獲得されたファジィルールを比較して判別する.学習後 の TAM ネットワークの出力画像を図 12 の (c) と (d) に 示し,図 13 の (b) に示す.学習のためのパラメータを 次に示す.

L	=	10	$rho \ init$	=	0.0
OC	=	0.8	$rho \ step$	=	0.1
α	=	0.0000001	$rho \max$	=	100.0
λ	=	0.33	$b_{j}^{(rate)}$	=	0.01
η	=	0.8	$\check{ heta}$	=	0.03
ξ	=	0.5	N_{set}	=	6.

Table 3: Result of Similarity Measure 1

	Similarity Measure 1
Similarity	
between Circle	32.45
and Ellipse	
Similarity between	
Square and Ellipse	65.05

Table 4: Result of Similarity Measure 2

	Similarity Measure 2				
Similarity	+	-	F	au	
between Circle	10	0	6	5.0	
and Ellipse	12	0	4	7.5	
Similarity between	0	0	24	5.0	
Square and Ellipse	6	0	18	7.5	

Table 5: result of Similarity Measure 3

	Similarity Measure 3				
Similarity	+	-	F	au	
between Circle	10	0	2	5.0	
and Ellipse	12	0	0	7.5	
Similarity between	0	0	12	5.0	
Square and Ellipse	6	0	6	7.5	

3つの指標の類似度で得られた結果をそれぞれ表3,表 4,および,表5に示す.円の画像から8個のファジィ ルールが得られ,四角の画像から11個のファジィルー ルが得られた.また,楕円からは6個のファジィルール が得られた.すべての類似指標は楕円の画像が四角の画 像よりも円画像に類似していることを示している.しか し,第2番目の類似指標と第3の類似指標は~のしき い値に依存する.したがって,今後しきい値の決定方法 について議論する必要がある.

7. おわりに

ここでは,ガボール関数を用いて,より広範囲な受容 野入力構造を導入した改良型 TAM ネットワークを提案 し,その有用性を文字認識の例で検討した.また,ネットワークからファジィ知識を獲得して再構築するアルゴ リズムについて提案し,その有用性を判別問題の例で検 討した.

参考文献

- [1] 松田: 知覚心理学の基礎, 培風館 (2000)
- [2] S.Grossberg: How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex, *Spatial Vision*, Vol.12, No.2, pp.163-185 (1999)
- [3] H.Neumann and W.Sepp: Recurrent V1-V2 interaction in early visual boundary processing, *Bi*ological Cybernetics, Vol.81, pp.425-444 (1999)
- [4] J.R.Williamson: Self-organization of topographic mixture networks using attentional feedback, *Neural Computation*, Vol.13, pp.563-593 (2001)
- [5] 林,前田:ガボール関数を用いた TAM ネットワー クの受容野入力構造,第 20 回ファジィシステムシ ンポジウム講演論文集,pp.410-413 (2004)
- [6] S.Marčelja: Mathematical description of the responses of simple cortical cells, *Optical Society of America*, Vol.70, No.11, pp.1297-1300 (1980)
- [7] J.Daugman: Uncertainty relation for resolution in space, spatial frequency, and orientaion optimized by two-dimensional visual cortical filters, *Optical Society of America*, Vol.2, No.7, pp.1160-1169 (1985)
- [8] 岡島、今岡: 情報量最大化と生体視覚細胞の受容野、電子情報通信学会論文誌 A, No.J83-A, Vol.6, pp.620-628 (2000)
- D.C.Lee: Adaptive processing for feature extraction: Application of two-dimensional Gabor function, *Remote Sensing*, Vol.17, No.4, pp.319-334 (2001)
- [10] 林, Williamson: TAM Network のプルーニング
 手法の提案,システム制御情報学会論文誌, Vol.17, No.2, pp.81-88 (2004)
- [11] G.A.Carpenter, S.Grossberg and J.Reynolds: ARTMAP: Supervised Real-time Learning and Classification of Nonstationary Data by a Selforganizing Neural Network, *Neural Networks*, Vol.4, pp.565-588 (1991)
- [12] 林,ウィリアムソン:ファジィTAM Network にお ける獲得知識の再構築法,第 18 回ファジィシステ ムシンポジウム講演論文集,pp.63-64 (2002)

[連絡先]

林 勲 関西大学 総合情報学部 〒 569-1095 大阪府高槻市霊仙寺町 2-1-1 telephone 072-690-2448 e.mail ihaya@kcn.res.kutc.kansai-u.ac.jp