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ABSTRACT

TAM network (Topographic Attentive Mapping network) is
a biologically-motivated neural network. With the prun-
ing algorithm, fuzzy rules are acquired from the TAM net-
work sturucture. In this paper, the restructuring algorithm of
fuzzy rules is discussed and the usefuleness of the algorithm
is illustrated.

1. INTRODUCTION

Several neural networks based on the human visual sys-
tem have been proposed, e.g., BCS[1], Neocognitron[2],
ARTMAP[3], TAM[4], [5], Visual Cortex Model[6], V1-
V2 model[7]. TAM (Topographic Attentive Mapping) net-
work is an especially significant model since the structure is
based on a biologically-motivated framework and possesses
a powerful learning mechanism. TAM’s feature layer is con-
structed to imitate the retina, the category layer imitates the
LGN (lateral geniculate nucleus) and the output layer im-
itates visual cortex. By applying the pruning algorithm to
these layers, fuzzy rules are acquired from TAM network
structure[5], [11].

On the other hand, several models which translate the
neural network structure into knowledge representation have
been proposed[8], [9], [10]. However, these models only
rehash the neural network structure as knowledge represen-
taion. There isn’t enough discussion how to built group-
ings of knowledge representation and how to restructure the
knowledge. Carpenter[3] has mentioned that even humans
cannot easily correlate knowledge representations (class) of
instances acquired by experience with a class name when he
/ she first experience that instance. For example, children
can distinguish and gather similar shapes of drink holders,
e.g., cup, glass and mug, but they can’t tell whether these
holder should be called as “cups”, “glasses” or something
else until their mother teaches them what the class names
are (See Figure 1). Thus, in general, a class name is given
while denoting and item to the represent a grouping or a
concept after instances are collected and grouped. Thus, the
important thing is how to group the instances and restructure

Figure 1: Examples of Cups and Glasses

the instances, not name the class. Moreover, humans might
not have the correct concept for the class. In our model,
we propose that the characteristic by which categorizes are
divided are vague and are integrated into the concept in a
gradual cumulative process (See Figure 2).

In this paper, we propose a new knowledge system in-
cluding the TAM network and a restructuring mechanism of
fuzzy rules. we called the system the fuzzy TAM network.
Figure 3 shows the diagram of the fuzzy TAM network. Af-
ter learning the TAM network, fuzzy rules acquired from the
TAM network are memorized to a fuzzy knowledge part.
The fuzzy knowledge part is constructed by classes, cases
and fuzzy rules (instances). The fuzzy rules are restructured
whenever the incremental learning of the TAM network is
accomplished. We discuss here how to formulate the fuzzy
TAM network and show the usefuleness of the fuzzy TAM
network through a concrete example.

2. TAM NETWORK

The structure of the TAM Network is shown in Figure 4.
When feature maps, fih, are given, the output signal to the
category layer, yj , are calculated using the node’s weights,
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Figure 2: Concept of Cups and Glasses
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Figure 3: Concept of Fuzzy TAM Network

wjih.
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∏
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∏
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∑L
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1 + ρ2bji

(1)

where xji are activities, ρ represents the vigilance parame-
ter and bji are inhibitory weights.

The output prediction, K, is calculated as follows:

K = {k|max
k

zk}

= {k|max
k

N
∑

j=1

yjpjk} (2)

where, zk are the output at each node of output layer and
pjk are weighted connections.

Let K∗ denote the index of the “correct” supervised
output class. If the network’s output prediction K is not
similar enough to K∗, we do ρ = ρ + ρ(step) until either
zK∗/zK ≥ OC or ρ ≥ ρ(max), where OC is the maximal
vigilance level. Once the subject of zK∗/zK ≥ OC is sat-
isfied, the feedback signal y∗j is calculated for the learning
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Figure 4: TAM Network

step.

y∗j =

∏M
i=1 xji ×

∑U
k=1 z

∗

kpjk
∑N
j′=1

∏M
i=1 xj′i ×

∑U
k=1 z

∗

kpj′k
(3)

z∗k = 1 if k = K∗; z∗k = 0 otherwise (4)

The learning parameters, wjih, pjk, bji, are obtained
as follows:

4wjih =
αy∗j (1 − λ1/M )(fih − wjih)

(α− 1)λ1/M + nj
, λ ∈ (0, 1)(5)

4pjk =
αy∗j (z

∗

k − pjk)

α+ nj
(6)

4bji = b
(rate)
j y∗j (xji − bji) (7)

4nj = αy∗j (1 − nj) (8)

where, α, λ and b(rate)j are parameters.
The algorithm of the TAM network including learning

steps and pruning steps is represented as follows:

[Step 1] The output prediction, K, is calculated.
[Step 2] If K is not similar enough to K∗, we do ρ = ρ +
ρ(step). When ρ reachs the maximal level, one node is added
to categories.
[Step 3] If zK∗/zK ≥ OC, the learning step starts. Param-
eters, wjih, pjk and bji, are updated.
[Step 4] Until zK∗/zK ≥ OC, let the algorithm repeat from
step 1 to step 3.
[Step 5] After learning, the pruning step starts. The data set
in which fsi, s = 1, 2, · · · , R is divided into learning data
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and checking data. The information entropy, H(i), is cal-
culated using the learning data for feature selections, where
ψk is a set of the data of the class k.

H(i) = −

N
∑

j=1

gj

U
∑

k=1

Gjk log2Gjk (9)

gj =

∑R
s=1 xjis

∑N
j=1

∑R
s=1 xjis

(10)

Gjk =

∑

s∈ψk
γjs × pjk

∑R
s=1 γjs × pjk

(11)

γjs =
∏

i∈I∗

xjis × xjis (12)

[Step 6] The following feature i∗ is extracted as an impor-
tant feature and we set I∗ = {i∗}.

i∗ = {i|max
i
H(i)} (13)

[Step 7] If the following condition is satisfied for checking
data at a category j, the link connections between j and
outputs k′, k′ = 1, 2, · · · , U, k′ 6= k, are removed. Simul-
taneously, the connections between j and features i′ 6∈ I∗,
are removed, where η is a threshold.

Gjk ≥ η (14)

[Step 8] If the following condition is satisfied for checking
data at the category j, the link connections between j and i,
and i′ 6∈ I∗, are removed, where θ is a threshold.

1

R

R
∑

s=1

γjs < θ (15)

[Step 9] If the following condition is satisfied for checking
data at K, the link connections between K and categories,
j′, j′ = 1, 2, · · · , N, j′ 6= j, are removed, where ξ is a
threshold.

ϕjK =

∑

s∈ΓK
γjs × pjK

∑N
j=1

∑

s∈ΓK
γjs × pjK

≥ ξ (16)

[Step 10] When a category has lost connections to all out-
puts or features, the category is removed. Any output and
feature which has been disconnected from all categories is
also removed.
[Step 11] Until all features are selected at step 6, let the
algorithm repeat from step 5 to step 10.

When the algorithm is terminated, the neural network
whose needless connections and nodes are pruned is ob-
tained. We should notice that the algorithm is a kind of
fuzzy tuning methods since the data procedure is the same
as that of fuzzy logic. Thus, we can acquire fuzzy rules from
the TAM network.

3. FUZZY KNOWLEDGE OF THE TAM NETWORK

The fuzzy rules acquired from the TAM network are mem-
orized to fuzzy knowledge part by the following format:

r1 : if f1 is z11 and · · · and fM is z1M
then C1 = o11, · · · , CU = o1U

r2 : if f1 is z21 and · · · and fM is F2M

then C1 = o21, · · · , CU = o2U
...

rN : if f1 is zN1 and · · · and fM is zNM
then C1 = oN1, · · · , CU = oNU











































(17)

where zji j = 1, 2, · · · , N, i = 1, 2, · · · ,M are the mem-
bership functions, which were the node’s weights, wji, in
TAM network. The real numbers, ojk , were the weighted
connections of output nodes, pjk, of the TAM network.

The fuzzy rules are ranked according to ϕjk of the equa-
tion (16) as follows:

C1 : r1(ϕ11) ≥ r2(ϕ21) ≥ · · · ≥ rN (ϕN1)
C2 : r1(ϕ12) ≥ r2(ϕ22) ≥ · · · ≥ rN (ϕN2)

...
CU : r1(ϕ1U ) ≥ r2(ϕ2U ) ≥ · · · ≥ rN (ϕNU ).



















(18)
In the fuzzy knowledge part, we have “Class” and “Case”.

A case means a general structure of fuzzy rules acquired
from the TAM network. We call the case “fuzzy case”. The
similar cases are grouped and the superviser then gives the
group a class name. Figure 5 shows an example, in which
there are two classes, “Cups” with three fuzzy cases and
“Glasses” with two fuzzy cases.
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Figure 5: Example of Fuzzy Knowledge Part

Now, when a fuzzy rule moves to the fuzzy knowledge
part from the TAM network, we need to define a similarity
measure between the fuzzy rules and fuzzy cases which ex-
ist in the fuzzy knowledge part to decide which class should
incorporate the fuzzy rule. We denote an M dimensional
membership function of fuzzy rules as µWj

(f) and an M
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dimensional membership function of fuzzy case as µZj
(f).

µWj
(f) = µwj1,wj2,··· ,wjM

(f1, f2, · · · , fM ) (19)

µZj
(f) = µzj1,zj2,··· ,zjM

(f1, f2, · · · , fM ) (20)

We define the similarity measure as follows:

I(W,Z) =
1

UN

U
∑

k=1

N
∑

j=1

E{log
µWj

(f) × pjk

µZj
(f) × ojk

}

=
1

UN

U
∑

k=1

N
∑

j=1

M+1
∑

i=1

E{log
µwji

(fi)

µzji
(fi)

}

=
1

UNL

U
∑

k=1

N
∑

j=1

M+1
∑

i=1

L
∑

h=1

log
µwji

(fih)

µzji
(fih)

(21)

where, µwjM+1
(fM+1) = pjk and µzjM+1

(fM+1) = ojk .
The algorithm for resturucturing fuzzy cases is achieved

according to the following steps.

[Step 1] Rank the fuzzy rule acquired from the TAM net-
work according to ϕjk of the equation (18).
[Step 2] Calculate the similarity measure I(W,Z) of the
equation (21).
[Step 3] Calculate the minimized similarity measure, I∗(W,Z) =
{I(W,Z) | min|I(W,Z)|}, among all fuzzy cases.
[Step 4] In the case of |I∗(W,Z)| ≥ τ , where τ is a thresh-
old, the fuzzy rule is registered as a fuzzy case of a new
class. The learning of the TAM network is continued.
[Step 5] In the case of 0 ≤ I∗(W,Z) < τ , the fuzzy rule
is registered as a new fuzzy case of the existing class of
I∗(W,Z). The learning of the TAM network is continued.
[Step 6] In the case of−τ < I∗(W,Z) < 0, the fuzzy rule is
presumed to be the same as the fuzzy case of I∗(W,Z). We
let the TAM network relearn from bji, wji(zji) and pjk(ojk)
of the fuzzy case of I∗(W,Z) as the initial parameter val-
ues. After learning, the resultant fuzzy rule of the TAM
network is exchanged to the existing fuzzy case in the fuzzy
knowledge part.

4. EXAMPLE

In this section, we present an example of how to restructure
fuzzy cases. Three data sets which include “4” and “•” are
shown in Figure 6. The boundaries between “4” and “•”
in the first data set and the third data set are represented by
around the funcion y = x. Alternatively, the boundary of
the second data set is y = −x. The parameters of the fuzzy
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Figure 6: Procedure of the Fuzzy TAM Network

TAM network are set as follows:

L = 10 rho init = 0.0
OC = 0.8 rho step = 0.1
α = 0.0000001 rho max = 100.0

λ = 0.33 b
(rate)
j = 0.01

η = 0.8 θ = 0.03
ξ = 0.5 τ = 10.0.

First, the fuzzy rule for the first data set is acquired from
the TAM network and the fuzzy rule is memorized as a
fuzzy case, “Case 1”, of “Class(y = x)” in the fuzzy knowl-
edge part. Next, the fuzzy rule for the second data set is
acquired from the TAM network and moved into the fuzzy
knowledge part. The similarity measure of the second fuzzy
rule with “Case 1” is obtained as I∗(2, 1) = 13.5 as shown
in Table 1. Since τ is set to 10.0, the fuzzy rule of the
second data set is registered as “Case 1” of a new class,
“Class(y = −x)”. When the third fuzzy rule for the third
data set is moved into the fuzzy knowledge part, the sim-
ilarity measures of the third fuzzy rule with the first fuzzy
case and the second fuzzy case are calculated, respectively.
Since I(3, 1) = −2.84, I(3, 2) = −1.88 and I∗(3, 1) =
−1.88, we let the TAM network relearn from bji, wji(zji)
and pjk(ojk) of the first fuzzy case as the initial parame-
ter values. The resultant fuzzy rule of TAM network is ex-
changed with the first fuzzy case and registered as “Case 1”.
The new fuzzy case, “Case 1”, is shown in Figure 7.

To show the usefulness of the TAM network by restruc-
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Table 1: Result of I(W,Z)

Fuzzy Case 1 (in FKP) Fuzzy Case 2 (in FKP)
Data 2 13.5 –
Data 3 -2.84 -1.88
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Figure 7: A New Fuzzy Case 1

turing fuzzy cases, the correct rate for checking data, which
is the same as the first data, is compared to the conventional
TAM network. The result is shown in Table 2. The correct
rate of the conventional TAM network is obtained as 50.0%
and the number of categories is 7. On the other hand, the
correct rate of the fuzzy TAM network is obtained as 60.0%
and the number of categories is 5. The correct rate of the
fuzzy TAM network is better than the TAM network and
the number of categories is less than TAM network.

Table 2: Correct Rate and Categories

Correct Rate Categories
Fuzzy Fuzzy

TAM TAM TAM TAM
Data 1 97.5% 97.5% 4 4
Data 2 80.0% 80.0% 5 5
Data 3 80.3% – 7 –
Data 3
after relearning – 97.5% – 6

Checking Data 50.0% 60.0% 7 5

5. CONCLUSIONS

We formulated here fuzzy TAM network and showed the
usefulness of fuzzy TAM network through an example. In
the near future, we have to discuss the similarity measure
how to compare fuzzy rules and formulate the algorithm.
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