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Abstract - The aperture problem is a significant
experiment for discussing visual models. Three
circle apertures has been displayed at a computer
CRT and a line inside the middle circle is mov-
ing. Then, a subject perceives perceptual group-
ing changing orientation of the line. In this pa-
per, we analysis aperture experiment data using
fuzzy rules acquired from TAM Network (Topo-
graphic Attentive Mapping Network) based on a
biologically-motivated neural network with folded
feedback mechanism.

I. INTRODUCTION

In the human visual system, an image on retina enters
to the lateral geniculate nucleus(LGN) through rod cells
and pyramidal cells, and is sent to the primary visual
cortex, V1 and V2. In V1 and V2, the contour, color
and texture of the image are detected and the motion of
direction is perceived. After going through visual cor-
tex, the image signal is divided into two paths which are
for the temporal lobe and the vertral lobe[l]. A lot of
visual neural networks based on the human visual sys-
tem have been proposed, e.g., BCS[2], Neocognitron|3],
ARTMAP4], fuzzy ARTMAPI5], TAM[6], Visual Cortex
Model[7], V1-V2 model[8] and so on.

In the Visual Cortex Model, Grossberg has discussed
the concept of visual system and showed a guideline for
modeling visual systems. He especially mentioned the
following two mechanisms are necessary subjects for vi-
sual models.

1. The folded feedback signals

2. The horizontal connections with excitatory and in-
hibitatory signals

Perceptual grouping[7] in aperture problem is a kind
of visual phenomenon and be an good experiment data
for constructing visual models. In this paper, we show a
perceptual grouping in circle aperture problems in which
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a circle has been displayed at the computer CRT and
subjects perceive perceptual grouping when a line inside
circles is moving[9]-[14]. Nishina et al.[12] pointed out the
perceptual grouping strongly depends on the display time
long and discussed the neccessity to include the feedback
mechanism in visual models. We report here we have got-
ten the similar result which supports the part of Nishina’s
insistences. Alternatively, the aperture experiment data
is analyzed using fuzzy rules acquired from TAM (To-
pographic Attentive Mapping) network. The TAM net-
work has three layers constructed by feature, category
and class layers. The feature layer is constructed for im-
itating the retina and the feature node has a receptive
field. The category layer imitates the LGN and the class
layer imitates V1. The learning algorithm of TAM net-
work provides a folded feedback mechanism and let the
output prediction of TAM network be coincided with su-
pervised output. The weak connections in TAM network
are removed by pruning algorithm[14] and fuzzy rules are
acquired from network structure since the data procedure
of the TAM network is similar to fuzzy logic.

We here analysis the aperture experiment data using
TAM network and show the necessity of the feedback
mechanism of the TAM network.

II. APERTURE PROBLEM

The aperture problem is a kind of visual experiment.
Figure 1 shows an outline of aperture problem. A circle
aperture has been first displayed at the center of com-
puter CRT and a line inside the circle moves from the
right-bottom to the left-up. While the line is moving,
other two circles at both sides of 45 degrees of the cen-
ter circle appear and each line inside two circles is also
moving from the bottom to the top at the vertical direc-
tion. If a subject would recognize those three lines might
be connected each other, the center line is perceived to
have changed the direction from the left-up to the top at
the vertical direction as same as the lines at both sides.
This phenomenon is called perceptual grouping. Nishina
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et al.[12] showed that the perceptual grouping strongly
depends on the length of time a display is viewed. Alter-
natively, they discussed the neccessity of feedback mech-
anism of visual model.

Figure 1: APERTURE EXPERIMENT

In this paper, we assume the perceptual grouping at
aperture experiments would depend on the relationship
among the distance between subject and a computer dis-
play, the radius of circles and the distance between cir-
cles. In order to specify the relationship, we let the dis-
tance between a subject and the computer display be
50cm, and conducted two kinds of experiments whose
ratio of the radius to the distance between circles is con-
stant and be not.
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Figure 2: REACTION OF SUBJECTS (INCONSTANT
CASE)

Figure 2 shows the reaction of subjects when the ra-
tio of radius (mm) to the distance (mm) is not constant.
Five experiments, (35,80), (35,85), (35,95), (35,100)
and (35,110), where (a,b) means that (radius, distance
between circles), are conducted by four subjects who are
in twenties. The horizontal axis represents the display
time (sec) and the vertical axis represent the perceptual
rate that subjects perceived the motion of direction of
lines. Each subject conducted 420 experiments double
which means totally 3,360 experiments for four subjects.
We found that Figure 2 supported the part of Nishina’s

paper in terms of dependency of perceptual rate to dis-
play time. Alternatively, the perceptual rate is lower
when the distance between circles is longer since the ra-
dius was fixed. Additionally, we found there were the
maximal values of the perceptual rate and the function
of perceptual rate was convex. That means that subjects
possess the most visiable display time.
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Figure 3: REACTION OF SUBJECTS (CONSTANT
CASE)

Figure 3 shows the second experiments in which the
ratio of radius to the distance is constant. Five experi-
ments, (23,60), (31,90), (35,90), (39,100) and (47, 120)
are conducted when the ratio was settled as 0.38. Each
subject conducted 420 experiments single which means
totally 1,680 experiments by four subjects. Excepting
(23,60), the perceptual rates are approximately the same
shape. That means that subjects perceived the same kind
of perceptual grouping among the ratio is constant.

III. TAM NETWORK

The structure of TAM Network is shown in Figure 4.
When feature maps, f;, are given, the basis nodes are
activated by the match between the activity distribution
in a feature map, f;n, and the distribution of the node’s
weights, wj;,. The outputs to output nodes, y;, are cal-
culated as follows:

>t Jinwjin

. = Lgh=lJwv gt 1

M
JIEZ (2)
i=1

where, p represents vigilance parameter and b;; are in-
hibitory weights.

The class prediction, K, is the index of the maximally
activated output node:

K = {k|m]?xzk} (3)

N
> uipj (4)
j=1

yp =

ZE =

915



where, p;i are weighted connections which represent the
probability of each output given the category.
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Figure 4: TAM NETWORK

Let K* denote the index of the “correct” supervised
output class. If the network’s output prediction K is not
similar enough to the supervised output K*, the “atten-
tion” is invoked and the p is raised until either the fol-
lowing subject is satisfied or until the maximal vigilance
level, OC, is reached. When the p reached the maximal
level, one node is added to categories.

If zx+/2zx < OC then repeat
(a) p=p+plster) )
(b) equation (1) — (4)

until either zx+/zxg > OC or p > p(maw).

Once the subject of zx+/zx > OC is satisfied, the
feedback signal y7 is calculated and the process moves to
learning step.

M U s
. [liy ®ji X D op—s ZkPik 6
Yy = N M U - (6)
2 =1 Hizy i X 2kmy 24Pk
zp = 1if k=K", 2z =0 otherwise (7)

The learning parameters, wj;n, Djk, bji, are obtained
as follows:

ay; (fin — wjin)

Nwsyp, = —————" =
Wi aB(M) +n; ®)
ays(zx — Pik)
Apjr, = ja—l—i'nj] (9)
Abji = b;rate)y; (ﬁji - bj) (10)

Any = ayi(1—ny) (11)
)\l/M

where, o, A and b;rate) are parameters.

Whenever one datum put into the TAM network, the
learning step is invoked and parameters are adjusted.
The learning process is terminated when some epochs
are achieved.

After learning, the process moves to pruning step. When
the data set, D, in which the data, fs;, s = 1,2,---, R
with the class k, are given, all data, R, are divided into
two group, learning data for learning the parameters and
checking data for estimating the result.

The information entropy[15], H (i), is calculated for
estimating the significance of feature maps, and all of
features are lined in order of value by H (7).

N U
H(i) = =Y g; Y Gilog,Gj (13)
j=1 k=1
25—1 Ljis
9 = oNer (14)
Zj:l > o1 Tjis
s . Vjs X Dk
Gy = s e X Pik (15)
2 e=1 Vis X Pjk
Yis = H Tjis X Tjis (16)
iel*
where, 1y, is a set of the data with the class k.
The following feature i* is extracted.
i* = {i|max H (i)} (17)

In order to estimate the strength of link connections,
the following three rules are defined.

[Pruning Rule 1]

If the following condition is satisfied for checking data
at each category j, the link connections between the cat-
egory j and classes, k', k' = 1,2,---,U, k' # k, are
removed. Simultaneously, the connections between the
category j and features, i’ ¢ I'*, are removed, where 7 is
a threshold.

ij >n (18)

[Pruning Rule 2]

If the following condition is satisfied for checking data
at each category j, the link connections between the cat-
egory j and features, 7 and ¢’ & I*, are removed, where 6
is a threshold.

1 R
R Z%‘s <40 (19)
s=1
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[Pruning Rule 3]

If the following condition is satisfied for checking data
at the class K, the link connections between the class K
and categories, j', 7' =1,2,---, N, j' # j, are removed,
where £ is a threshold.

Dsery Vis X PIK
N
Zj:l ZSEPK Vis X PjK

> ¢ (20)

PiK =

The learning of TAM network and pruning of nodes and
link connections are achieved according to the following
algorithm:

[Step 1] The output prediction, K, is calculated.

[Step 2] If K is not similar enough to the supervised
output K*, we do p = p + p(***?). When the p reached
the maximal level, one node is added to categories.
[Step 3] If zx~/2x > OC is satisfied, the learning step
starts.

[Step 4] Until zx«/zx > OC is satisfied, let the algorithm
repeat from step 1 to step 3.

[Step 5] After learning, the pruning step starts. The in-
formation entropy, H (i), is calculated using the learning
data.

[Step 6] The following feature i* is extracted and we set

I = {i*}.

i* = {i|max H(i)} (21)
K3

[Step 7] If the following condition is satisfied for checking

data, the link connections between the category j and

classes k' # k are removed. The link connections between

the category j and features ¢’ ¢ I* are also removed.

Gjr =1 (22)

[Step 8] If the following condition is satisfied for checking
data, the link connections between the category j and
features ¢ and i’ ¢ I* are removed.

1R
=D Vs <0
R

[Step 9] If the following condition is satisfied for check-
ing data, the link connections between the class k£ and
categories j' # j are removed.

ik > §

[Step 10] When a category has lost connections to all
classes or features, the category is removed. Any class
and feature has been disconnected from all categories are
also removed.

[Step 11] Until all features are selected at step 6, let the
algorithm repeat from step 5 to step 10.

(23)

(24)

When the algorithm is terminated, the optimum neu-
ral network pruned needless connections and nodes is ob-
tained. We should notice that the algorithm is a kind of
fuzzy tuning methods which adjust the number of fea-
tures, classes and fuzzy rules since the data procedure is
the same to the fuzzy logic.

IV. AN ANALYSIS OF APERTURE
PROBLEMS USING TAM NETWORKS

We analysis here the aperture experiment data in Sec-
tion II using the TAM network and show the availability
of the feedback mechanism of the TAM network. The
parameters for learning are set as follows:

epoch = 1 category init = 0
L = 5 rho init = 0.0
oc = 0.8 rho step = 0.1
Q@ = 0.0000001 rho max = 100.0
py = 033 b = 0.01
n = 08 0 = 0.03
£ = 0.5.
Table 1: CORRECTNESS AND THE NUMBER OF
NODES OF TAM NETWORK
Pruning
TAM TAM
Figure 2 | Correctness (%) | 62.4 58.8
Number of Nodes 6 6
Figure 3 | Correctness (%) | 63.7 60.7
Number of Nodes 6 1

Table 1 shows the correctness and the number of nodes
at category layer of the TAM network before pruning
and after pruning. The correctness is not so well. The
reason that the correctness was not so well is that the
data set includes many inconsistant supervised output
that subjects answered “yes” and “no” for the responce
of perceptual grouping in spite of the same feature values.
We think that the low correctness come from the lack of
horizontal connections with excitatory and inhibitatory
signals. On the other hand, the number of nodes for
Figure 3 is reduced to one from six by pruning procedure.
Since the nodes of category layer represent fuzzy rules,
we interpret the number of fuzzy rules for representing
Figure 3 is reduced.

Figure 5 shows the fuzzy rules acquired from the TAM
network before pruning for the data in Figure 2. Figure
6 shows the fuzzy rules acquired from the TAM network
before pruning for the data in Figure 3. The depth axis
represents the fuzzy rule’s number and the horizontal axis
represents the discrete type fuzzy sets of features, which
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are the circle radius, the distance between circles, the
dispaly time of antecedent part of fuzzy rules and the
perceptual rate of conclusion part, where Figure 5 and
Figure 6 only show the fuzzy rules representing percep-
tual grouping.

Figure 6: FUZZY RULES OF FIGURE 3

Figure 7: FUZZY RULES OF (35,80)

In the Figure 5, the perceptual rates of the second and
the sixth fuzzy rules whose third feature’s fuzzy sets rep-
resent middle, are higher than other rules. We interpret
the reason as the higher perceptual rates around 0.4s and
0.6s at display time in Figure 2. In the Figure 6, the per-

ceptual rate of the third fuzzy rules whose third feature’s
fuzzy sets is middle, is higher than others. We also in-
terpret the reason as the higher perceptual rate around
0.6s in Figure 3.

Figure 9: FUZZY RULES OF (35,110)

Next, we analysis the similarity of perceptual rates of
(35,80), (35,95) and (35,110) in Figure 2 using the fuzzy
rules. Figure 7 shows the fuzzy rules of (35,80). Fig-
ure 8 and 9 show the fuzzy rules of (35,95) and (35,110),
respectively. Table 2 shows the number of fuzzy rules
and correctness related to Figure 7 to Figure 9. In the
Figure 7 to Figure 9, the membership functions of three
features at antecedent part are approximately the same
since the function of perceptual rates of (35,80), (35,95)
and (35,110) in Figure 2 are the same shapes. On the
other hand, the perceptual rate in Figure 7, the single-
ton of conclusion part, is the highest among Figure 7 to
Figure 9. We interpret the reason as the highest percep-
tual rates of (35,80) among (35,80), (35,95) and (35,110)
in Figure 2. Moreover, the perceptual rate in Figure 9
is the lowest. We also interpret the reason as the lowest
perceptual rate of (35,110).

Finally, in order to verify the necessity of feedback
mechanism of TAM network, let the vigilance learning
(and bj;) be inactive, i.e., the feedback mechanism is
stooped. Table 3 shows the comparision results between
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Table 2: THE NUMBER OF FUZZY RULES AND
CORRECTNESS OF TAM NETWORK

(radius, center | Number of | Correctness
distance) Fuzzy Rules (%)
(35,80) 4 53.3
(35,95) 6 62.5
(35,110) 6 71.0

by TAM network with feedback mechanism and without
feedback mechanism, where the data of (39,100) in Figure
3 is used for the checking data and other data are for the
learning data. The correctness of TAM network without
the feedback mechanism couldn’t be measured because
of the endless increasing of nodes at category layer. The
correctness and the number of nodes of TAM network
after pruning is slightly better than before pruning.

From these results, we insist the TAM network might
be a useful model since acquired fuzzy rules are accept-
able.

Table 3: COMPARISON BETWEEN WITH FEED-
BACK AND WITHOUT FEEDBACK FOR TAM NET-
WORK

Pruning
TAM TAM
Learning Data (%) 62.9 62.9
with Number of Nodes 6 6
Feedback | Checking Data (%) 55.4 66.1
Number of Nodes 6 1

Learning Data (%) - -
without Number of Nodes | over 1000 | over 1000

Feedback | Checking Data (%) -
Number of Nodes - -

V. CONCLUSIONS

We analysis the aperture experiments using fuzzy rules
acquired from TAM network and discuss the usefulness
of feedback mechanism of TAM network.
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