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Abstract—For pattern classification problems, an ensemble-
learning method identifies multiple weak classifiers using learning
data and combines them to improve the discrimination rate
of testing data. We have previously proposed possibilistic data
interpolation bagging (pdi-Bagging), which improved the discrim-
ination rate of testing data by adding virtually generated data to
the learning data. However, the accuracy of the correct virtual
data type is unstable because the virtual data are generated over
a wide area of the data space. In addition, the discriminant
accuracy is low because the evaluation index for changing the
generation class of the virtual data is defined in each dimension.
In this study, we propose a new method for specifying the genera-
tion area of virtual data and changing the generation class of the
virtual data. Consequently, the discriminant accuracy improved
because five new bagging methods that generate virtual data
around the correct discrimination data and error discrimination
data are formulated, and the class of virtual data is determined
using the proposed new evaluation index in multidimensional
space. We formulate the new pdi-Bagging algorithm and discuss
the usefulness of the proposed method using numerical examples.

Index Terms—Fuzzy Inference, Ensemble
Method, Bagging, Clustering

Virtual Data,

I. INTRODUCTION

Recently, ensemble learning methods [1]-[3], which are
useful for pattern classification problems, have been proposed.
The ensemble method learns multiple weak classifiers through
training data and can improve the classification accuracy of
the evaluation data by combining multiple weak classifiers
across the layers. Ensemble learning can be broadly cate-
gorized into two types: classifier and attribute combination
models [4]. The classifier combination model combines weak
classifiers, whereas the attribute combination model constructs
weak classifiers with highly correlated attributes for the class
patterns. The classifier combination model can be classified
into two types: independent and dependent. In the independent
type, each classifier is combined independently, whereas in the
dependent type, each classifier is combined while maintaining
a dependency relationship. In the independent type, each
classifier is trained using individual training data. Thus, it is
possible to integrate them independently and achieve a high
classification rate. The independent type includes the bagging
method [5], random forests [6], [7], and error-correcting
output codes [8]. The bagging method represents bootstrap
aggregation. The learning data for the classifier are obtained
via bootstrap sampling, and multiple classifiers were learned
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independently from the learning data. The final result is
obtained based on a majority vote involving all the integrated
classifiers. Because the bagging method is a simple ensemble
method that uses multiple classifiers, the algorithm is simple
and offers high applicability. For example, it is often used as a
clustering model for medical data [5] and a prediction model
for time series [9]. In addition, it obtained a higher accuracy
than AdaBoost when used as a model for detecting defects in
semiconductor wafers [10]. In another case, it was applied to
the Social Stratification and Mobility survey in Japan [11].

In contrast, there are boosting methods [12]-[14] and adap-
tive mixture methods of local experts [15] as the dependent
type of classifier combination model. Boosting is a method for
improving the classification rate by sequentially learning weak
classifiers. AdaBoost [12] is particularly useful, and it has the
advantage of being easy to analyze dataset features. Thus, the
dependent type, represented by boosting, is trained using mul-
tiple weak classifiers while maintaining sequential interdepen-
dence with the training data and can identify the input—output
relationship associated with the dependence. Contrastingly,
for the independent type represented by bagging, the weak
classifier is independent for each training dataset. However, the
processing algorithm is relatively simple and highly accurate.
In contrast, an ensemble method that integrates bagging and
boosting has also been proposed [16].

We have proposed a new bagging algorithm for the gen-
eration and interpolation of data around misclassified data
using a specified membership function [17]-[19]. We call this
method possibilistic data interpolation bagging (pdi-Bagging).
The interpolation of data around misclassified data is called
virtual data. In pdi-Bagging, data misclassified by the classifier
model are not weighted, as in AdaBoost, nor are they added
to the subsequent training data. The classes of the virtual data
are estimated using locations [20], [21], and the virtual data
are added to the training data to estimate the discriminant lines
using the weak classifiers based on fuzzy inference [22]-[24].
Similarly, in the next layer, the class of virtual data is estimated
and added to the training data to estimate the discriminant line.
This series of operations is repeated, and the classification
rate of the evaluation data is obtained using a majority vote of
multiple weak classifiers. As the amount of data increases with
the addition of virtual data during training, the amount of data
in each class is equalized by eliminating the bias in the amount
of data between classes, which improves the accuracy of the



discriminant line identification. In this study, we formulate a
new pdi-Bagging algorithm and discuss the usefulness of this
method using numerical examples. Specifically, we formulate
five types of virtual data generation methods and discuss their
usefulness. We also discuss the usefulness of a new evaluation
index that changes the output class of the virtual data.

II. PDI-BAGGING

The pdi-Bagging method identifies multiple weak classifiers
through training data, and the final class output of the checking
data is determined by a majority rule using a plurality of weak
classifiers. A conceptual diagram of pdi-Bagging is shown
in Fig. 1. In pdi-Bagging, the weak classifiers My of the
fuzzy inference are learned using training data that is proba-
bilistically extracted from all datasets, and the discriminant
rate of the training data TRD is calculated. Subsequently,
virtual data are generated around the misclassified data using
membership functions. The generated virtual data are added
to the original training data to increase the amount of training
data TRD. Using the original training data and virtual data, the
classification rate is calculated by a weak classifier M, based
on fuzzy inference. Increasing the number of TRD improves
the discriminant accuracy of weak classifiers. The repetition
of operations is completed L times when the end judgment
is satisfied. Finally, the evaluation data (CHD) are input into
L weak classifiers My,My,--- ,M;,--- ,My, and the final result
is then calculated using the majority rule. Since pdi-Bagging
adds virtual data to the training data and calculates the dis-
criminant rate using multiple weak classifiers, its discriminant
rate was higher than that of the conventional bagging method
and AdaBoost [17], [18].

In pdi-Bagging, fuzzy clustering using simple fuzzy infer-
ence [22] is adopted as the weak classifier. Fuzzy inference has
excellent learning abilities and can visualize learning results
using rule descriptions. Therefore, fuzzy inference is adopted
as a weak classifier. Simplified fuzzy inference expresses rules
in if-then form, uses fuzzy sets defined by the membership
functions in the antecedent part, and defines the consequent
part in singleton form using real numbers. Here, we used a
trapezoidal fuzzy set as the membership function.

Let z be the output variable, and p; be a singleton in the
consequent part, the fuzzy rule, r;, i=1,2,--- | R, is expressed
as follows:

ri @ if x;ispg, (x1) and --- and x, is pg, (xn)
then C = {Cy | z= pi}

where C is the output class, and Cj indicates that the class
value is G for rule r;.

Suppose we obtain the input data x = (xy,x2,--- ,x,). The
input data x are input into the antecedent part of the i-th fuzzy
rule r;, and the degree of the antecedent part, y;(X) = ur, (x1)-
HF,(x2)- --- -pR, (xn), is calculated. The results of the fuzzy
inference, Z, and class C are calculated using the following
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Fig. 1: pdi-Bagging Algorithm

equations:
2 f:l ﬂi(X) - Pi

YR mi(x)
{C | min|z —z[}

Let us now explain the generation of virtual data using pdi-
Bagging. Let x(d) = (+(d),x2(d), - ,¥?(d), --- xD(d))
denote the d-th data in the dataset D consisting of W data
points. The virtual data x (d) are generated around correctly
discriminated data(correct-classified data) x“(d) and misclas-
sified data xF(d). For a certain real number, h, 0 < h < 1, the
virtual data x¥ (d) of the j-th attribute of x"(d) is generated
using the membership function yr (x;) of the fuzzy number F
as follows:

xXj(d) = {xj|pur(xj) =h, pr(xj(d) =1}
h ~ N(1,1), 0<h<l1
where xf»(d) denotes the correct-classified data xJC(d) or the
misclassified data xf (d). In addition, the membership function

pr(xj) is defined as the following normal distribution, whose
center is xj (d) and whose standard deviation is ©.

1 (xj —x5(d))?
V2no? -z )

We propose the following five methods for generating
virtual data:

Cc

ur(xj) = (0

(1) CA: Virtual data generation method with correct
classified data in the whole space
When the training data x5(d) is correctly classified
using a weak classifier, virtual data x¥(d) are gen-
erated around the correct classifying data x¢(d).
(2) CC: Virtual data generation method with correct
classified data at the cluster center
When the training data x5(d) is misclassified by the
weak classifier, the midpoint between the closest cor-
rect classified data and the farthest correct classified
data from x£(d), whose classes are the same as the



misclassified data, x£(d) is calculated. Virtual data
x¥(d') are generated around the correct classified
data x€(d’) closest to the midpoint.

x6(d) = {x(e)| min|x“(e) - %(m}XIXE (d)
e
—x(f)| +min X (d) —x“(g)])|,
for Ve, f,g}
(3) E: Virtual data generation method with misclassified
data

When the training data x°(d) is discriminated as
misclassified by the weak classifier, virtual data
x”(d) are generated around the misclassified data
xE(d).

(4) MA: Virtual data generation method by mixing correct
classified data and misclassified data in the whole
space

By alternately using the CA and E type in each
bagging layer, virtual data x" (d) is generated around
x¢(d) and xE (d).

(5) MC: Virtual data generation method by mixing correct
classified data and misclassified data at the cluster
center

By alternately using CC type and E type in each bag-
ging layer, virtual data x¥(d) are generated around
x€(d) and xE(d).
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Fig. 2: Generation of Virtual Data with Correct Data
Around Cluster Center

In particular, regarding CC, we explain how virtual data
are generated around the correct classified data at the cluster
center using Fig. 2. We assume that the clustering problem of
a total of eight data points into two classes, green and yellow,
is shown in Fig. 2. The training data with a green frame in
yellow, located at the bottom of the figure was misclassified
as the green class instead of the yellow class. Because the true
class of the misclassified data xZ(d) is the yellow class, the
midpoint between the closest and the farthest correct classified
data from x%(d), whose classes were yellow, is calculated.
Virtual data x" (d’) are generated around the correct classified
data x©(d’) whose class is yellow and closest to the midpoint.
According to the generation method, several virtual data points
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in the CC method tended to be generated near the center of
the cluster. Therefore, we should note that the generation of
virtual data by the CC method tends to affect the discriminant
line more than the CA method, which generates virtual data
in the entire space. Additionally, it is possible to control the
degree of influence on the discriminant line by moving the
coordinate position currently set as the midpoint to an arbitrary
interpolation or extrapolation point from the endpoints.

III. FORMULATION FOR CLASS MODIFICATION

In pdi-Bagging, virtual data are generated around misclassi-
fied data and correct classified data to improve the discriminant
rate. However, to further improve the classification rate, it is
necessary to assign the correct classes to the virtual data. Here,
we propose a new class determination method for assigning
the correct classes to the virtual data.

Suppose that virtual data x"(d) are generated from the
correct classified data x©(d) and the misclassified data xZ(d).
The class of the virtual data x¥ (d) should be the same as the
output class of the source data x5(d) = {x“*(d), xE*(d)}.
However, virtual data may be generated at locations distant
from the source data. In addition, virtual data may be generated
in areas where different classes of data are dense. Therefore,
the class k* of the virtual data x¥(d) is determined by
the integration evaluation formula using the following three
evaluation criteria. Therefore, the class k* of the virtual data
x"(d) is determined by the integration evaluation formula
using the following three evaluation criteria: the evaluation of
the correct/misclassified data (E;), the evaluation of the class
centers (E,), the evaluation of neighborhood data classes (E3).

(1) Evaluation of Correct/Misclassified Data(E,)

The evaluation value E; is defined as the distance between
virtual data x"(d), source data xS%(d) with class k. The
smaller the evaluation value Ej, the higher the dependence
of x¥(d) on the class k.

X" (d) —x**(d)|
max, x$*(d) —xP+V (e)| — miny [x5(d) —xP+V (£)[’

for Ve, f

Ef

EY 1—Ef, for p#k
(2) Evaluation of Class Centers(E;)

The evaluation value E; is defined as the distance between
virtual data x¥ (d) and the center of class k. The smaller the
evaluation value E,, the higher the dependence of x¥ (d) on
the class k. Now, when the center of class k is represented as
xK,

k " (d) — x|

2= e O ()~ ()" T Ve

(3) Evaluation of Neighborhood Data Classes(E3)

The evaluation value E3 is defined as the distance between
virtual data x¥(d) and the closest correct/misclassified data



x5*(e) with class k. The smaller the evaluation value E3, the
higher the dependence of x (d) on the class k.

¢ min|x"(d) x5 (e)]
37 maxy [xPTV(f) —xPV(g))]

According to these three criteria, the evaluation Ej is higher
when virtual data are generated near the source data. In
contrast, the evaluation E; is high when the virtual data
generate near the center of the class.

By integrating these three evaluation criteria, the overall
evaluation value EX was obtained. The virtual data x" (d) have
a class k* that minimizes the following overall evaluation value
E*.

, for Ve,f.g

k= {k|mkinEk = mkin(le{c +wmEs +wiEN)Y )
where wi,w»,w3 denote the weights for each evaluation
value.
We formulate the pdi-Bagging algorithm as follows:

It is assumed that W and D data are ob-
tained. Data D are categorized into two types
of datasets: WTRP training data DTRP and
WCEHD check data DCHP. Therefore, W =
WTRD L wCHD Tn addition, interpolated data
are represented by DV.
DTRD

Step 1

Step 2 The training data are used as inputs to
the /-th weak classifier M;, and the discrimi-
nant rate rlTRD is obtained. where M( denotes
the initial weak classifier.

The d-th data points that were correctly or
misclassified were temporarily extracted from
DTRD 1t is assumed that the d-th data point
is misclassified. For the j-th attribute value
x‘j(d) of the correct classified data or the
misclassified data, virtual data x}/ (d) are gen-

erated by the membership function, ur(x;).

Step 3

Calculate the class k* of the virtual data
x”(d) using the equation (2). Remove the
virtual data x" (d) from the [ — 1th DV with
I >2, and add the virtual data x"(d) with
class k to the Ith DV.

Extract v pieces of virtual data from D" using
a random number and add them to DTRP.
Steps 2—4 are repeated with [ =[/-+1, and the
algorithm is terminated at K = [, satisfying
rHD > @ for threshold 6. Alternatively, the
algorithm ends when [ > K is satisfied for the
number of weak classifiers L and the number
of iterations K, K < L.

To obtain the final discrimination result,

Step 4

Step 5

Step 6

Step 7

DCHD is applied to My, My, ---, My, -+, Mk,
and then the discriminant rate rIC{HD is ob-

tained by majority rule.
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IV. VERIFICATION AND DISCUSSION USING
NUMERICAL DATA

To explain the pdi-Bagging algorithm, we discussed the
two-dimensional classification problem. It is assumed that 200
training data points and 200 checking data points exist in
a two-dimensional space of the interval [0,1] and that these
data can be categorized into two classes. Fig. 3 shows the
numerical data used as training and checking data. These
numerical data were constructed by adding the value £0.05 to
the basic data using random numbers. We deal with two-input
and two-class discrimination problems as numerical data. For
this discriminant problem, the real value of the consequent
part of the fuzzy inference rules was set to 2.0 (red, () and
3.0 (blue, A).
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(a) Numerical Example Data 1 (b) Numerical Example Data 2

Fig. 3: Numerical Example Training and Testing Data

The simplified fuzzy inference was used as the weak
classifier, and five types of trapezoidal membership functions
were set for each input interval [0, 1]. Because the data
space is two-dimensional, 25 rules were constructed over the
entire space. Additionally, to verify the classification rate when
the rules were added to the data space as specific areas, 49
rules were added to Gy = {(x1,x2) | [0.4,0.7] x [0.4,0.7]} as
the specific area Gy, and four rules were added to G, =
{(x1,x2) | [0.7,0.8] x [0.3,0.7]} as the specific area G». Con-
sequently, the total number of rules was 78. The addition of
rules improved the discriminant accuracy rate in regions away
from the discriminant line, where the data were dense, and the
overall discriminant rate was improved. The discriminant rate
was calculated for the following three types: no additional
rule, membership function set in the trapezoidal shape, and
membership function defined in the right-angled trapezoidal
shape at both ends of specific regions. When the membership
function in a specific region was set to right-angled trapezoid
type at both ends of the specific region, the size of the specific
region did not change, even if the membership functions were
learned. However, when the trapezoidal membership functions
were set at both ends of specific regions, the size of the region
changed as the membership functions were learned. Therefore,
when the right-angled trapezoidal membership function was
set in the additional rules, the membership functions did not
move outside the specific region, even when the membership
functions were learned, which were intensively learned within
a specific region.



The initial value of the antecedent part of fuzzy reasoning
was set by the default method, and the learning order of the
antecedent and consequent parts was that the consequent part
was learned first, and then the antecedent and consequent
parts were alternately learned. During the learning process,
the learning coefficients of the x-coordinates x; and x,. of the
two vertices of the upper bases of the trapezoidal membership
function denoted K;, and K. and were set to 0.01 [24]. In
addition, the learning coefficients of the difference o and B
between the x-coordinates of the upper and lower bases denote
Ky and K and were set to 0.01 [24]. However, the learning
coefficient K, of the singleton of the consequent part was set
to 0.4 for the first consequent learning and 0.6 for the alternate
learning. The number of epochs of the consequent part was
set to 10, and the alternating learning of the consequent part
was set to (10, 10).

As a membership function ur(x;) for generating the virtual
data, the normal distribution of Equation (1) with a standard
deviation of o= 0.5 was selected, and the number of virtual
data generated was one. However, in preliminary experiments,
the discriminant rate of the fuzzy inference was approximately
87%. As a result, approximately 26 of the 200 checking data
points were erroneously classified, and approximately eight
virtual data points were required to bring the total number of
virtual data points to 200 training data points. Therefore, we
discuss the discriminant rate when the number of generated
virtual data varied from 1 to 10.

The evaluation value weights for class estimation of the
virtual data were (wy,wp,w3) = {(1/3, 1/3, 1/3), (0.2, 0.4,
0.4), (0.2, 0.3, 0.5), (0.2, 0.5, 0.3), (0.5, 0.25, 0.25), (0.01,
0.495, 0.495), and (0.05, 0.475, 0.475)}. The weight w; of
the distance from the source data significantly affects the class
estimation in determining the weight. Therefore, we discussed
the discriminant rate for a total of seven types: w; = 1/3 when
wip =wy =ws, w; =0.5, and five types with the value of w;
reduced.

The algorithm is terminated by the termination rule whose
number of iterations is K = 5. In the mixed discriminant type,
the type for the misclassified data was adopted in the odd
layers, and the type for the correct classified data was adopted
in the even layers. In the fuzzy-inference learning process,
the order of the data is changed using random numbers every
epoch. Because the number of epochs required for learning the
consequent part and the alternate learning of the antecedent
and consequent parts were 10 and (10, 10), respectively, the
total number of epochs was 150 in Five-Layer Learning. As
two-fold cross-validation was used here, 150 epochs of epoch
learning were performed for each dataset, resulting in 300
epochs of learning. We compared the average discriminant
rates obtained in ten trials for each type: CA, CC, E, MA,
and MC.

The discriminant rate for evaluation data using five types of
virtual data generation methods—the type of correct classified
data in the whole space (CA), the type of correct classified data
at the cluster center (CC), the type of misclassified data (E), the
mixing type of correct classified and misclassified data in the
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entire space (MA), and the mixing type of correct classified
and misclassified data in cluster center (MC)—are listed in
Table I and Figures 4-6. Table I shows the discriminant rate
for each weight with respect to the evaluation index, with and
without additional rules, and with respect to the membership-
function shape within a specific region. Additionally, we cal-
culated the difference between the discriminant rate when 25
rules were set using a trapezoidal membership function. Figs.
4-6 show the average discriminant rate for the weight with
respect to the evaluation index, with and without additional
rules, and with respect to the membership-function shape
within a specific region.
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Fig. 4: Average Discriminant Rates of Five Methods with 25
Basic Rules

From the results presented in Table I and Fig. 4, the
following characteristics of the discriminant rate are clear for
the case of 25 rules with trapezoidal membership functions:
The discriminant rate by two-fold cross-validation of fuzzy
inference with 25 rules was 84.40%. The discriminant rate
of all five methods that generate virtual data is higher than
the result of this fuzzy inference. Therefore, the generation of
virtual data is effective in improving the discriminant rate.

For the 25 rules of the trapezoidal membership function,
the discriminant rate is not necessarily high. However, the
discriminant rates of the five methods were higher than those
of the 25 rules. For the types of correct classified data, the
discriminant rate of CC is higher than that of CA, and even
for the mixing types of correct classified data, the discriminant
rate of MC is higher than that of MA. This is because, in
CC and MC, virtual data are generated near the center of the
cluster. Thus, the fuzzy rules near the center of the class were
learned with high accuracy.

Table I and Fig. 5 show the characteristics of the discrimi-
nant rate for the 78 rules added within the specific region using
a trapezoidal membership function. The discriminant rate of
two-fold cross-validation of simple fuzzy inference with 78
rules using the trapezoidal membership function was 89.68%.
However, of the five types of virtual data generation methods,
the discriminant rates of the CC, E, and MC were higher than
those of the simple fuzzy inference. Therefore, methods other
than generating virtual data in the entire space are effective.



TABLE I: Comparison of Discriminant Rates Based on Five Methods

Rale R fon Values CA (%) CC (%) E (%) MA (%) MC (%)
Weight DisR__ Dif. (a) DIt () | DisR. _Dif (@ _Dit (b)) | DisR. _ Dif (a) Dif. (b) | DisR.__ Dif (a DIL. (b) | DisR__ Dif. (a _ DiL (b)
173, 173, 13 8673 — — 8770 — — 86.61 — — §7.05 — — §7.29 — —
0.2,04,04 86.50 — — 87.60 — 87.03 — §7.28 — 87.52 — —
0.2,03,05 87.00 — — 87.55 — — 86.70 — — £7.03 — — 87.10 — —
(a) TrapM.E. 02,05,03 86.85 - - 87.70 - — 86.70 - - 87.08 — — 87.15 — —
25 Rules 05, 0.25, 0.25 86.40 — — 87.45 — — 86.95 — — 86.85 — — 87.40 — —
0.01, 0495, 0495 | 87.18 — — 87.55 — — 86.55 — — 86.58 — — 86.88 — —
0.05, 0475, 0475 | 8745 — — 87.48 — — 86.85 — — 86.63 — — 87.30 — —
[ Average T6ET — = B738 — = 86,77 — — ¥6.93 — — ¥7.23 = =
173, 173, 173 89.53 280 — §9.83 213 - 89.80 318 — 89.78 273 — 89.79 250 —
02,04, 04 89.33 283 - 89.93 233 — 90.15 313 — 90.00 273 —_ 89.05 243 —
02, 03,05 89.03 203 - 90.15 260 - 90.30 3.60 — 89.78 275 - 80.93 2.83 -
(b) TrapM.E 0.2,05,03 88.95 210 - 89.65 1.95 — 90.05 335 - 89.85 278 — 80.83 2.67 —
78 Rules 05, 0.25, 0.25 80.18 277 — 89.48 203 — 90.05 3.10 — 89.38 253 — 90.23 2.83 -
0.01, 0475, 0475 | 87.40 0.22 — 89.80 225 — 88.63 208 — 88.55 1.97 — 80.43 255 -
0.05, 0475, 0475 | 8870 1.25 — 90.00 252 — 89.83 297 — 89.85 3.23 — 80.85 2.55 —
Average SEXT 200 — ®O83 276 — BO83 306 — 89,60 87 — S0.86 P —
173, 173, 113 90.03 330 050 9033 263 030 89.93 332 0.14 9023 318 045 90.15 236 036
0.2,04,04 80.83 333 0.50 90.20 260 027 90.35 333 0.20 90.28 3.00 027 90.28 276 032
0.2,03,05 90.45 345 143 90.10 255 005 | 90.05 3.35 025 | 90.10 3.08 0.32 90.30 3.20 037
(c) RA.TrapM.E 0.2,05,03 89.95 3.10 1.00 90.35 265 070 90.05 335 0.00 90.30 323 045 80.98 2.82 015
78 Rules 05, 0.25, 0.25 90.18 378 1.00 90.28 283 0.80 89.93 297 013 | 9005 3.20 0.67 90.35 295 013
0.01, 0475, 0475 | 8755 0.37 0.15 90.40 285 0.60 88.63 207 0.00 88.40 1.82 015 90.18 3.30 075
0.05, 0475, 0475 | 89.83 237 1.13 90.35 287 035 89.95 3.10 0.12 90.03 3.40 0.17 90.03 273 0.17
Average T60 281 OBl | 909 271 045 | 84 307 001 | 8991 29 031 90.18 704 032
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Fig. 5: Average Discrimination Rates of Five Methods with
78 Total Rules Added by Trapezoidal Membership Function

In addition, Table I and Fig. 6 show the characteristics
of the discriminant rate for the 78 rules added within the
specific region using the right-angled trapezoidal membership
function. The discriminant rate of two-fold cross-validation of
simple fuzzy inference with 78 rules, using the right-angled
trapezoidal membership function, was 89.73%. Among the
five types of virtual data generation methods, the discriminant
rates of the four types, CC, E, MA, and MC, were higher
than simple fuzzy inference. In particular, MC and CC were
higher than 0.45%. Therefore, in the case of 78 rules with
right-angled trapezoidal membership functions, the average
discriminant rate was high for CC and MC. Based on the
differences in the discriminant rates of the 25 rules of the
trapezoidal membership function, the average discriminant rate
increased by 2.71% to 3.07% for all five methods. However,
the rate of increase in the average discriminant rate of CA
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and CC was slightly lower than those of the other methods.
In addition, the average discriminant rate of the 78 rules for
the right-angled trapezoidal membership function is 0.38%
higher than that of the 78 rules of the trapezoidal membership
function. In contrast, the maximum discriminant rate was
90.35% for CC when the weights of the evaluation index were
(0.2, 0.5, and 0.3) and MC when the weights of the evaluation
index were (0.5, 0.25, and 0.25). In a specific area, there are
many singular data points; therefore, learning the rules in this
area increases the overall discriminant rate. Additionally, when
the right-angled trapezoidal membership functions were set
in this specific region, the size of the specific region did not
change. Thus, the membership functions are efficiently learned
within the specific region, and the overall discriminant rate

increases.
CA cc E MA MC

Fig. 6: Average Discrimination Rates of Five Methods with 78
Total Rules Added by Right Trapezoidal Membership Function
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Table II shows the results of the z-test of the discriminant



TABLE II: Results of t-Test between Five Methods with 25
Basic Rules
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rate for the five virtual data generation methods using the 25
rules of the trapezoidal membership function. The numerical
data presented in Fig. 3 were used alternately as training data
and checking data by two-fold cross-validation. In Table II,
the significance of each data point was indicated by (T) and
(2) when there was a significant difference between the five
methods in the one-tailed 7-test with a significance level of 5%.
In addition, the average value of p was obtained when only one
of (1) and (2) was significant. From Table I, the discriminant
rates for CA, E, and MA were low, and the discriminant rates
for CC and MC were high. Therefore, CC and MC are useful
methods with higher discriminant rates than other methods.
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Fig. 7: Discriminant Rates Owing to Changes in Virtual Data
in CC

Next, we discuss how the discriminant rate changes depend-
ing on the amount of virtual data generated. The maximum
discriminant rate was 90.35% for 78 rules with right-angled
trapezoidal membership functions. They were for CC when
the weights of the evaluation index were (0.2, 0.5, 0.3) and
MC when the weights of the evaluation index were (0.5, 0.25,
0.25). Therefore, we discuss the discriminant rate based on the
amount of virtual data generated for the two weights. Fig. 7
and Fig. 8 show the changes in the discriminant rate. Figure 7
shows the discriminant rate and the average discriminant rate
when the amount of virtual data changes from one to ten in the
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Fig. 8: Discriminant Rates Owing to Changes in Virtual Data
in MC

CC, with the weights of the evaluation index being (0.2, 0.5,
and 0.3). In addition, Fig. 8 shows the discriminant rate and
average value of the discriminant rate with respect to changes
in the number of virtual data points in MC, with the weights
of the evaluation index being (0.5, 0.25, and 0.25).

In Fig. 7, the two types of discriminant rates using two-
fold cross-validation gradually decrease while maintaining a
constant difference without crossing, even when the amount
of virtual data increases and the variance value is small. By
contrast, the average discriminant rate peaked at the maximum
discriminant rate of 90.53% when the amount of virtual data
was two and then gradually decreased as the number of
generated virtual data increased, and its variance value was
small. The virtual data generated by the CC did not depend
on the position of the misclassified data and were generated
near the center of the cluster, where many correct classified
data exist. Therefore, the discriminant rate was not affected
by the amount of virtual data and exhibited almost the same
values.

On the other hand, in Fig. 8, the discriminant rate decreased
sharply as the number of generated virtual data increased. In
particular, the two types of discriminant rate by two-fold cross-
validation decreased sharply as the amount of virtual data
increased with frequent crossings, and the variance value was
large. By contrast, the average discriminant rate peaked at its
maximum of 90.35% when the amount of virtual data was one
and then decreased sharply as the number of generated virtual
data increased. The minimum discriminant rate was 87.90%
when the number of virtual data was 9. The difference in the
discriminant rate was 2.45%. The virtual data by MC was
generated near the correct classified and misclassified data.
Therefore, the discriminant rate is strongly affected by the
amount of virtual data generated, and the optimal number of
generations of virtual data.

In summary, the methods with the highest discriminant
rates were CC and MC, with 78 rules using the right-angled
trapezoidal membership functions in specific regions. In both
methods, the discriminant rate was improved by adding rules
to specific regions where singularity data existed. In addition,
as the membership function was defined by a right-angled



trapezoid, the specific region was not expanded, and the
membership function was learned intensively. These reasons
led to high discriminant rates. Next, we discuss the relationship
between the number of virtual data generated and the discrim-
inant rate. In CC, virtual data are generated from the correct
classified data near the center of the cluster, but the number
of the correct classified data points is large. Therefore, the
discriminant rate is relatively constant without being affected
by the number of virtual data points. In contrast, in MC, virtual
data are generated from the correct classified data near the
center of the cluster and the misclassified data in the entire
space. Thus, the discriminant rate depends relatively on the
number of generated virtual data. Therefore, after determining
the weight of the evaluation index, the maximum discriminant
rate can be obtained from CC and MC with the number
of virtual data generated as a parameter. In this numerical
example, the maximum discriminant rate was 90.53% for CC
when the number of virtual data generated was two.

V. CONCLUSIONS

In this paper, we considered a method for generating virtual
data and a method for changing classes using pdi-Bagging. In
addition, we evaluated the accuracy of the generation method
of virtual data and the class change using numerical examples.

In the future, we will investigate how virtual data can be
generated when there is a bias in the amount of data between
classes, and how to generate virtual data with directionality.
Additionally, it is necessary to determine the usefulness of pdi-
Bagging in practical applications using actual measurement
data.
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