
Evaluation of Bagging-type Ensemble Method
Generating Virtual Data

Honoka Irie† and Isao Hayashi‡
Graduate School of Informatics, Kansai University, Takatsuki, Osaka, Japan,

† rsuinaixiang@gmail.com
‡ ihaya@kansai-u.ac.jp

Abstract—For pattern classification problems, an ensemble-
learning method identifies multiple weak classifiers using learning
data and combines them to improve the discrimination rate
of testing data. We have previously proposed possibilistic data
interpolation bagging (pdi-Bagging), which improved the discrim-
ination rate of testing data by adding virtually generated data to
the learning data. However, the accuracy of the correct virtual
data type is unstable because the virtual data are generated over
a wide area of the data space. In addition, the discriminant
accuracy is low because the evaluation index for changing the
generation class of the virtual data is defined in each dimension.
In this study, we propose a new method for specifying the genera-
tion area of virtual data and changing the generation class of the
virtual data. Consequently, the discriminant accuracy improved
because five new bagging methods that generate virtual data
around the correct discrimination data and error discrimination
data are formulated, and the class of virtual data is determined
using the proposed new evaluation index in multidimensional
space. We formulate the new pdi-Bagging algorithm and discuss
the usefulness of the proposed method using numerical examples.

Index Terms—Fuzzy Inference, Virtual Data, Ensemble
Method, Bagging, Clustering

I. INTRODUCTION

Recently, ensemble learning methods [1]–[3], which are
useful for pattern classification problems, have been proposed.
The ensemble method learns multiple weak classifiers through
training data and can improve the classification accuracy of
the evaluation data by combining multiple weak classifiers
across the layers. Ensemble learning can be broadly cate-
gorized into two types: classifier and attribute combination
models [4]. The classifier combination model combines weak
classifiers, whereas the attribute combination model constructs
weak classifiers with highly correlated attributes for the class
patterns. The classifier combination model can be classified
into two types: independent and dependent. In the independent
type, each classifier is combined independently, whereas in the
dependent type, each classifier is combined while maintaining
a dependency relationship. In the independent type, each
classifier is trained using individual training data. Thus, it is
possible to integrate them independently and achieve a high
classification rate. The independent type includes the bagging
method [5], random forests [6], [7], and error-correcting
output codes [8]. The bagging method represents bootstrap
aggregation. The learning data for the classifier are obtained
via bootstrap sampling, and multiple classifiers were learned

independently from the learning data. The final result is
obtained based on a majority vote involving all the integrated
classifiers. Because the bagging method is a simple ensemble
method that uses multiple classifiers, the algorithm is simple
and offers high applicability. For example, it is often used as a
clustering model for medical data [5] and a prediction model
for time series [9]. In addition, it obtained a higher accuracy
than AdaBoost when used as a model for detecting defects in
semiconductor wafers [10]. In another case, it was applied to
the Social Stratification and Mobility survey in Japan [11].

In contrast, there are boosting methods [12]–[14] and adap-
tive mixture methods of local experts [15] as the dependent
type of classifier combination model. Boosting is a method for
improving the classification rate by sequentially learning weak
classifiers. AdaBoost [12] is particularly useful, and it has the
advantage of being easy to analyze dataset features. Thus, the
dependent type, represented by boosting, is trained using mul-
tiple weak classifiers while maintaining sequential interdepen-
dence with the training data and can identify the input–output
relationship associated with the dependence. Contrastingly,
for the independent type represented by bagging, the weak
classifier is independent for each training dataset. However, the
processing algorithm is relatively simple and highly accurate.
In contrast, an ensemble method that integrates bagging and
boosting has also been proposed [16].

We have proposed a new bagging algorithm for the gen-
eration and interpolation of data around misclassified data
using a specified membership function [17]–[19]. We call this
method possibilistic data interpolation bagging (pdi-Bagging).
The interpolation of data around misclassified data is called
virtual data. In pdi-Bagging, data misclassified by the classifier
model are not weighted, as in AdaBoost, nor are they added
to the subsequent training data. The classes of the virtual data
are estimated using locations [20], [21], and the virtual data
are added to the training data to estimate the discriminant lines
using the weak classifiers based on fuzzy inference [22]–[24].
Similarly, in the next layer, the class of virtual data is estimated
and added to the training data to estimate the discriminant line.
This series of operations is repeated, and the classification
rate of the evaluation data is obtained using a majority vote of
multiple weak classifiers. As the amount of data increases with
the addition of virtual data during training, the amount of data
in each class is equalized by eliminating the bias in the amount
of data between classes, which improves the accuracy of the
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xS,k(e) with class k. The smaller the evaluation value E3, the
higher the dependence of xV (d) on the class k.

Ek
3 =

mine |xV (d)−xS,k(e)|
max f ,g |xD+V ( f )−xD+V (g)|

, f or ∀e, f ,g

According to these three criteria, the evaluation E1 is higher
when virtual data are generated near the source data. In
contrast, the evaluation E2 is high when the virtual data
generate near the center of the class.

By integrating these three evaluation criteria, the overall
evaluation value Ek was obtained. The virtual data xV (d) have
a class k∗ that minimizes the following overall evaluation value
Ek.

k∗ = {k|min
k

Ek = min
k
(w1Ek

1 +w2Ek
2 +w3Ek

3)} (2)

where w1,w2,w3 denote the weights for each evaluation
value.

We formulate the pdi-Bagging algorithm as follows:

Step 1 It is assumed that W and D data are ob-
tained. Data D are categorized into two types
of datasets: W T RD training data DT RD and
WCHD check data DCHD. Therefore, W =
W T RD +WCHD. In addition, interpolated data
are represented by DV .

Step 2 The training data DT RD are used as inputs to
the l-th weak classifier Ml , and the discrimi-
nant rate rT RD

l is obtained. where M0 denotes
the initial weak classifier.

Step 3 The d-th data points that were correctly or
misclassified were temporarily extracted from
DT RD. It is assumed that the d-th data point
is misclassified. For the j-th attribute value
xS

j(d) of the correct classified data or the
misclassified data, virtual data xV

j (d) are gen-
erated by the membership function, µF(x j).

Step 4 Calculate the class k∗ of the virtual data
xV (d) using the equation (2). Remove the
virtual data xV (d) from the l − 1th DV with
l > 2, and add the virtual data xV (d) with
class k to the lth DV .

Step 5 Extract v pieces of virtual data from DV using
a random number and add them to DT RD.

Step 6 Steps 2–4 are repeated with l = l+1, and the
algorithm is terminated at K = l, satisfying
rCHD

l ≥ θ for threshold θ. Alternatively, the
algorithm ends when l ≥K is satisfied for the
number of weak classifiers L and the number
of iterations K, K ≤ L.

Step 7 To obtain the final discrimination result,
DCHD is applied to M0, M1, · · · , Ml , · · · , MK ,
and then the discriminant rate rCHD

K is ob-
tained by majority rule.

IV. VERIFICATION AND DISCUSSION USING
NUMERICAL DATA

To explain the pdi-Bagging algorithm, we discussed the
two-dimensional classification problem. It is assumed that 200
training data points and 200 checking data points exist in
a two-dimensional space of the interval [0,1] and that these
data can be categorized into two classes. Fig. 3 shows the
numerical data used as training and checking data. These
numerical data were constructed by adding the value ±0.05 to
the basic data using random numbers. We deal with two-input
and two-class discrimination problems as numerical data. For
this discriminant problem, the real value of the consequent
part of the fuzzy inference rules was set to 2.0 (red, ⃝) and
3.0 (blue, △).

!"# %&'()*+", -."'/,( 0"1" 2 !3# %&'()*+", -."'/,( 0"1" 4

Fig. 3: Numerical Example Training and Testing Data

The simplified fuzzy inference was used as the weak
classifier, and five types of trapezoidal membership functions
were set for each input interval [0, 1]. Because the data
space is two-dimensional, 25 rules were constructed over the
entire space. Additionally, to verify the classification rate when
the rules were added to the data space as specific areas, 49
rules were added to G1 = {(x1,x2) | [0.4,0.7]× [0.4,0.7]} as
the specific area G1, and four rules were added to G2 =
{(x1,x2) | [0.7,0.8]× [0.3,0.7]} as the specific area G2. Con-
sequently, the total number of rules was 78. The addition of
rules improved the discriminant accuracy rate in regions away
from the discriminant line, where the data were dense, and the
overall discriminant rate was improved. The discriminant rate
was calculated for the following three types: no additional
rule, membership function set in the trapezoidal shape, and
membership function defined in the right-angled trapezoidal
shape at both ends of specific regions. When the membership
function in a specific region was set to right-angled trapezoid
type at both ends of the specific region, the size of the specific
region did not change, even if the membership functions were
learned. However, when the trapezoidal membership functions
were set at both ends of specific regions, the size of the region
changed as the membership functions were learned. Therefore,
when the right-angled trapezoidal membership function was
set in the additional rules, the membership functions did not
move outside the specific region, even when the membership
functions were learned, which were intensively learned within
a specific region.
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trapezoid, the specific region was not expanded, and the
membership function was learned intensively. These reasons
led to high discriminant rates. Next, we discuss the relationship
between the number of virtual data generated and the discrim-
inant rate. In CC, virtual data are generated from the correct
classified data near the center of the cluster, but the number
of the correct classified data points is large. Therefore, the
discriminant rate is relatively constant without being affected
by the number of virtual data points. In contrast, in MC, virtual
data are generated from the correct classified data near the
center of the cluster and the misclassified data in the entire
space. Thus, the discriminant rate depends relatively on the
number of generated virtual data. Therefore, after determining
the weight of the evaluation index, the maximum discriminant
rate can be obtained from CC and MC with the number
of virtual data generated as a parameter. In this numerical
example, the maximum discriminant rate was 90.53% for CC
when the number of virtual data generated was two.

V. CONCLUSIONS

In this paper, we considered a method for generating virtual
data and a method for changing classes using pdi-Bagging. In
addition, we evaluated the accuracy of the generation method
of virtual data and the class change using numerical examples.

In the future, we will investigate how virtual data can be
generated when there is a bias in the amount of data between
classes, and how to generate virtual data with directionality.
Additionally, it is necessary to determine the usefulness of pdi-
Bagging in practical applications using actual measurement
data.
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