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ABSTRACT 

Sleep apnea and other sleeping disorders impair health and         
quality of life. Polysomnography is the primary method for         
diagnosis, but involves cost and utilization of medical        
resources, which limit access for potential patients. The clinical         
environment and sensors of polysomnography hinder typical       
sleep patterns in many individuals, thus degrading the analysis.         
Sensors suitable for at-home monitoring of sleep have recently         
become available. At-home monitoring of sleep may improve        
diagnosis due to increased familiarity for sleeping and ability         
for multiple sleep sessions, as well as lowering the cost.          
However, more robust algorithms would be needed to partially         
compensate for the less controlled conditions and sensor        
systems. A mat with a grid of force sensors has become           
available. This study was developing a state machine algorithm         
to analyze the activity at multiple force sensors of a mat while            
the subject was lying in supine position on the mat and           
undertaking natural, rhythmic respiration. The algorithm      
monitored the subset of active sensors to detect potential         
respiratory cycles. The similarity of the timing of the detected          
cycles between different sensors was used to determine the         
overall pattern of respiratory activity for the subject. Reliable         
detection of timing for respiratory cycles would be useful for          
detection of sleep apnea events. 

INTRODUCTION 
Sleep disorders, such as sleep apnea, reduce the quality of          

sleep and are associated with increased risk of daytime         
drowsiness, heart conditions, high blood pressure, stroke and        
cognitive decline [1-3]. The incidence of sleep disorders        
increases with old age and obesity [4-6].  

The primary form of diagnosing sleep disorders is a         
polysomnography session, in which the subject is connected to         
multiple monitoring sensors and recording systems, and tries to         
sleep during the session. Sensors for recording and analysis         
include electroencephalogram, electro-oculogram,   
electrocardiogram, electromyogram, nasal airflow sensor and a       
microphone [7, 8]. The typical pattern of sleep is hindered in           
some patients due to the combination of being in an unfamiliar           
clinical environment, being connected with many wired sensors        
and air flow monitors, and the presence of medical staff.          
Polysomnography sessions also have high cost that limits        
accessibility. Many individuals having sleep apnea and other        
disorders are estimated to remain undiagnosed and untreated,        
increasing the risk of health impairments and lower quality of          
life.  

Efforts have been made to diagnose for sleep apnea         
without undergoing a full polysomnography session [8, 9].        
These efforts usually attempt to analyze a smaller set of          
recorded signals or take place in a more natural setting.          
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Examples include using primarily audio sounds [10], a standard         
hospital patient monitor [11], and at-home sleep monitoring        
[12, 13]. These alternative methods show promise but more         
development is necessary to improve diagnosis. 

The rhythmic cycle of respiration has been used to         
develop state machine algorithms that have been shown to         
detect inspirations from analysis of several respiratory signals,        
including diaphragm electromyography [14, 15], central venous       
pressure [16], intercostal muscle electromyography [12], and       
human respiratory signals recorded during a sleep study,        
including air flow, ribcage and abdominal movements [17].  

A “smart rubber” mat with a grid of pressure sensors for           
monitoring pressure points of a human lying on top has become           
available (Body Pressure Sensors, Sumitomo Riko Company       
Ltd., Komaki, Aichi, Japan). This study developed a state         
machine algorithm to analyze the activity at multiple force         
sensors of this mat while the subject was lying on the mat and             
undertaking natural, rhythmic respiration. The algorithm was       
developed to determine which sensor nodes had the most         
activity, and applied the state machine algorithm to each of          
those active nodes for the detection of respiration cycles. The          
timing of the detected respiration cycles of the different nodes          
was compared toward determining which nodes had the most         
similar activity. 

The development of such algorithms would support        
utility of pressure mats for at-home monitoring of sleep.         
Reliable detection of timing for respiratory cycles would be         
useful for detection potential sleep apnea events or other         
sleeping disorders. 

RECORDING OF SIGNALS 
The “smart rubber” mat (Sumitomo Riko Company Ltd.,        

Komaki, Japan) was utilized for recording. An adult male         
subject laid on top of the mat in supine position for the            
recording session. The layers under the subject were as follows          
from bottom to top: hard surface, futon mattress, smart rubber          
mat, cloth sheet, and the subject. The mat was long enough to            
extend from the head to the waist, and wide enough to extend            
beyond the shoulders. The mat had a 2 dimensional grid of           
sensor nodes for pressure, having a total of 1057 sensor nodes.           
The sampling frequency was 20 Hz and the recording session          
lasted just over 6 minutes. The subject underwent normal         
rhythmic breathing while lying still on the mat during the          
recording session. The recorded data values were stored in a          
text file for later data analysis.  

SIGNAL PROCESSING 
A custom LabView program (National Instruments,      

Austin, TX) was developed to analyze the recorded data. The          
data was read from the text file and organized in a           
2-dimensional matrix of pressure values with each column        
being one of the 1057 sensor nodes, and the rows being one of             
the 7215 sequential samples (20 Hz for just over 6 minutes). 

 

 

 

Time (s) for a 15 second period 

Figure 1: Example of signals from one sensor node of the 
mat.  The top trace shows how the pressure values changed 
over the 15 seconds of the example trace. The middle trace 
shows the first derivative of the pressure trace calculated 
using a 1 second moving time window. The bottom trace 
shows the states of the state machine algorithm that were 
determined based on the first derivative signal. The highest 
peak of the state trace indicated when the cycle of 
respiration was detected by the algorithm.  That time of 
detection was stored in an array for that node. 

 
Not all sensor nodes had contact with the body of the           

subject. The cycles of respiration generated more movement in         
certain body locations compared to others. Since the subject         
was trying to lie still while breathing normally, the nodes with           
the most activity should be the nodes with the most useful           
respiratory information. Standard deviation was calculated for       
all the samples of a node. The higher the value of standard            
deviation, the more active the node was considered to be. The           
values of standard deviation were sorted and the most active          
5% of the nodes were selected (53 nodes) for further analysis. 

A cycle of respiration involves a phase of inspiration         
followed by a phase of expiration. The first derivative of the           
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pressure values was calculated and used to differentiate these         
phases. A moving time window of 1 second (20 sample points)           
was used to fit a linear line, with the slope being saved as the              
first derivative value for that point. The moving time window          
had the effect of smoothing out some of the noise variations in            
the recorded values.  

Figure 1 shows an example 15 seconds of these signals.          
The data points for this trace were from the node with the            
highest standard deviation, and so was considered to be the          
most active node. The top trace shows the pressure values. The           
middle trace shows the first derivative of the top trace          
calculated using a 1 second moving time window. 

STATE MACHINE ALGORITHM 
The state machine used for this study was based on the           

algorithm developed for a prior respiration study [16]. A state          
machine has the advantage of matching the functional sequence         
of the respiratory “machine” necessary for exchange of gases,         
consisting of a phase of inspiration followed by a phase of           
expiration.  

 

 

Figure 2: State machine used to characterize the state of the 
respiratory cycle based on the first derivative (Si) values. To 
pass from the Look for Exhale state to the Putative Exhale, 
the Si value needed to be below the Threshold value (t). 
Then to pass to the Ready for Inspire state, the Si value had 
to remain below t for Re samples.  Similarly, to pass from the 
Putative Inspire state to the Detection state, the Si needed to 
remain equal or above t for Ri samples.  The Detection state 
would indicate that an inspiration had been detected.  The 
time at this detection would be recorded as the time to mark 
one cycle of respiration.  

 
The first derivative values for a node (as shown in middle           

trace of Figure 1) were designated as Si, and were input to the             
state machine in sequential order. A diagram of the state          
machine is shown in Figure 2. The variable t is the threshold            
and was 0 for this study, differentiating positive and negative          
first derivative values. The value c was a count of required           
number of sequential values to be above or below the threshold           

(t=0) to progress to the next stage. Ri was the number of the             
sequential count to progress from Putative Inspire state to         
Detection. Re was the number to progress from Putative Exhale          
state to Ready for Inspire state. In this study both the value of             
Ri and Re were set for 300 ms, so was 6 sample points. The time               
when the Detection state was entered was saved as time to           
indicate the occurrence of one respiratory cycle. 

The bottom trace of Figure 1 shows the changes in the state            
by the progression of the state machine analyzing the Si values           
(first derivative, middle trace of Figure 1). The Ready for          
Inspire state was assigned the lowest value, and the Detection          
state was assigned the highest value of the trace. Thus, the           
rising edge of the state trace that reached the highest level           
indicated the time of detection of one cycle of respiration. This           
time was saved in an array of detection times for that sensor            
node. 

CHARACTERIZE SIMILARITY 
To characterize how similar the respiration detection       

timing of one sensor node were to other sensor nodes, a Percent            
Correct value was calculated for each pair of nodes as follows.           
One node was considered as the “standard” node and the other           
node was the “test” node. The timings of the “standard” node           
were considered the “correct” values. A time window was         
formed around each detection time of the standard node, with          
the window defined from a begin time to an end time. The            
begin time was halfway between this standard time and the          
prior standard time. The end time was halfway between this          
standard time and the next standard time. For the “test” node to            
be “correct” for this “standard” detection time, one and only          
one “test” node time must have occurred within this window          
between the begin time and end time. The number of          
“standard” times having a “correct” match with the “test” node          
were counted and divided by the number of detection times of           
the “standard” node, to form the Percent Correct value. 

RESULTS 
Figure 3 shows an example comparison of node 0 as the           

“standard” node to two “test” nodes, node 1 and node 2. The            
traces in Figure 3 show a 15 second example period, but the            
Percent Correct value was calculated from analysis of the full 6           
minute recording. Node 1 had timings that more closely         
matched the “correct” timings of node 0, and had a higher           
Percent Correct value of 93%. Node 2 had timings that did not            
match as well the “correct” timings of node 0, and had a lower             
Percent Correct value of 46%. 
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Time (s) for a 15 second period 

Figure 3: Example traces with node 0 being the “standard” 
node and nodes 1 and 2 being the “test” nodes. The Percent 
Correct value of node 1 to node 0 was calculated, as well as 
node 2 to node 0. The traces show a 15 second example, but 
all 6 minutes were used for the calculation of Percent 
Correct. The timings of node 1 more matched the timings of 
node 0. The timings of node 2 less matched the timings of 
node 0. 

 
Each of the selected most active nodes were compared to          

the other nodes. Table 1 shows the Percent Correct values of           
the 5 most active nodes. 

 
DISCUSSION AND FUTURE DIRECTIONS 

The Percent Correct calculations of the developed       
algorithm do seem to help identify nodes that have similar          
respiration detected timings to one another. Further analysis        
would be necessary to identify a subgroup of nodes that show           
close correlation to one another (relatively high Percent        
Correct). Such a subgroup of cells may best reflect the overall           
pattern of respiration for the subject lying on the mat. 

More testing will be required to compare the detected         
respiration timings with the actual respiration behavior.       
Disturbances to the pattern due to body movement unrelated to          
respiration would need to be managed, such that the active          
respiratory subgroup of nodes would dynamically adapt to the         
current situation. 

An algorithm that would detect the timing of respiratory         
cycles of a subject lying on a sleeping mat would enable an            
at-home monitoring of sleep that would enhance monitoring        
and potential detection of sleep disorders while a subject is          
sleeping in their normal home environment with minimal        
sensory equipment that would hinder the typical pattern of         
sleep in some subjects. 

 
Table 1: Percent Correct calculations. The node labeled at top          
of each column was the “standard” node, compared to all          
other nodes. The diagonal cells are blank as a node was not            
compared with itself. 

 node 0 node 1 node 2 node 3 node 4 

node 0  93% 61% 81% 56% 

node 1 93%  55% 73% 57% 

node 2 46% 40%  46% 59% 

node 3 81% 76% 53%  57% 

node 4 44% 34% 57% 46%  
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