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Abstract ​—Untreated sleep apnea may result in      

higher risk for daytime drowsiness, heart conditions,       

high blood pressure, stroke, reduced cognitive      

function, and development of dementia.     

Polysomnography is the primary diagnostic tool for       

sleep apnea, but the cost and uncomfortable       

environment hinder diagnosis in many individuals.      

Home-based sleep monitoring systems would increase      

accessibility and comfort, but require robust signal       

analysis for quality analysis. Machine learning has       

been applied for sleep apnea classification, but more        

improvements would enhance effectiveness. In this      

study a Fuzzy set system with tuning was developed         

for classification of sleep apnea or hypopnea events        

during sleep for individuals at risk of sleep apnea.         

Annotation files from a sleep study available on        

Physionet database were analyzed for classification of       

sleep disruption events. The performance of the       

developed fuzzy set algorithm was compared with       

classification by other machine learning algorithms      

using the Weka system. Improved algorithms for       

classification of sleep events would be useful toward        

development of sleep monitoring systems that      

potentially would encourage individuals with sleep      

events to seek treatment. 
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I. INTRODUCTION

Sleep apnea is a common sleep disorder which        
results in periods of cessation or reduction of        
breathing during sleep [7] . The incidence of sleep         
apnea increases with old age and obesity. Sleep        
apnea is associated with increased risk of daytime        
drowsiness, heart conditions, high blood pressure,      
stroke, reduced cognitive function, and     
development of dementia [19, 25]. 

A polysomnogram is the primary assessment      
for clinical diagnosis of sleep apnea [13].       
Polysomnography is expensive [22], which may      
limit access for diagnosis and potential treatment       
for many individuals. Polysomnography typically     

records 12 or more electrical signals from sensors        
on the body during an extended period of sleep.         
Each of the channels typically have multiple wires        
between the sensor and a central controller unit.        
Many individuals find the attached sensors and       
wires to interfere with sleep by lowering their        
comfort level or free movement [5]. Some       
individuals also have trouble relaxing for sleep due        
to the clinic environment, including having medical       
staff around. The quality of the assessment would        
be impaired if the sleep pattern is much disturbed         
from their normal sleep pattern. 

Efforts have been made to diagnose for sleep        
apnea without undergoing a full polysomnography      
session [5, 7, 22, 23]. These efforts usually attempt         
to analyze a smaller set of recorded signals or take          
place in a more natural setting, such as using         
primarily audio sounds [24], a standard hospital       
patient monitor [1], or at-home sleep monitoring [3,        
5, 18, 22]. These alternative methods show       
promise, but more development of signal      
processing for classification would enhance     
diagnostic value. 

Compared with a polysomnography done in a       
clinical setting, a home-based system would have       
less control of the recording conditions, sensors and        
sources of potential noise artifacts. Thus,      
algorithms used to analyze measurements in      
home-based systems would need to be more robust        
and adaptive. Machine learning algorithms may      
provide a way toward more robust analysis of sleep         
monitoring signals.  

Some work applying machine learning for sleep       
monitoring has been reported [7, 16] and shows        
promise. Expert system rules have been applied for        
sleep classification [2]. Fuzzy logic methods have       
been applied to analysis of physiological data [4, 8,         
10, 16].  

In a previous study, a fuzzy logic with tuning         
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system was used for training with scalar parameters        
and output values [8]. The algorithm was used for         
prediction of age of rats based on properties of the          
muscles. In the current study, that algorithm was        
adapted to classify the outcome to discrete sets.        
The training was accomplished based on scalar       
error values. Once the training was completed, the        
testing phase would classify the resulting scalar       
output value to one of the discrete classes. This         
system was utilized to analyze recorded sleep       
events, and to classify each event as a hypopnea,         
apnea or other possible event. The performance of        
the algorithm was compared with classification by       
other machine learning algorithms using the Weka       
system [8, 9]. Such algorithms for classification of        
sleep events would be useful toward development       
of sleep monitoring systems that potentially would       
encourage individuals with sleep events to seek       
treatment. 

II. MATERIALS AND METHODS 

A. Data Preparation of Sleep Apnea Events 

The data that was used for training and testing         
of the algorithm was derived from the publically        
available database of Physionet    
(www.physionet.org) [14]. The data had been      
recorded during a sleep study conducted by St.        
Vincent’s University Hospital under the University      
College Dublin Sleep Apnea Database (UCD). The       
UCD consists of recordings made during an       
overnight polysomnogram session. The UCD data      
used for this study consisted of the annotation files         
that were made for each polysomnogram session.       
These annotations were made by an experienced       
sleep technologist who analyzed the recorded      
signals of the polysomnogram to detect sleep       
events, and then made annotations for each event.        
The annotation files are included in and accessible        
from the UCD of physionet. 

Each observed sleep event was classified by the        
sleep technologist as either a hypopnea or an apnea         
event. A cessation of breathing for at least 10         
seconds is generally considered apnea, but the       
classification for the annotations involved many      
signals and measurements of the polysomnography      
recorded signals. Hypopnea is a less severe       
disruption of respiration during sleep, for which the        
breathing is overly shallow or the respiratory rate is         
abnormally low [2]. The ​x vector inputs used for         
training and testing were derived from data in the         
annotation file. The utilized annotation data for       
each sleep event consisted six values for       
observations that occurred during the event or       
where attributable to the event. The six values for         
observations consisted of 1) the duration of the        
event in seconds, 2) desaturation level as lowest        
oxygen saturation (spO​2​), 3) percent drop in spO​2​,        

4) existence of arousal (binary), 5) heart rate in         
beats per minute for the Bradycardia-Tachycardia      
effect, and 6) the percent change in heart rate as a           
percent.  

These parameters of the annotation files have       
dynamic relations with hypopnea or apnea events       
during sleeping [6, 13]. A primary function of        
respiration is the exchange of oxygen and carbon        
dioxide between the external air and internal blood        
that is circulating through the tissues. This       
exchange of gases is hindered during the hypopnea        
or apnea events. During an apnea that has no cycle          
of inspiration and expiration, the only gas exchange        
is between the amount of air remaining in the lungs          
and the circulating blood. During a hypopnea       
event, some inspiration and expiration cycles may       
occur, but at a shallow depth or slow rate, such that           
an insufficient exchange of gases occurs. The       
longer the duration of the event, the greater the         
impairment in gas exchange, which would be       
reflected in lower spO​2 values. A spO​2 value that         
falls too low would indicate threat to the survival of          
tissue, especially brain and cardiac muscle.      
Hypopnea and apnea events also affect heart rate        
and are linked to cardiac arrhythmias [15]. The        
impaired breathing lowers spO​2 and induces a       
sympathetic response that slows heart rate below       
normal (bradycardia). Once respiration resumes the      
heart rate speeds up above normal (tachycardia) to        
increase spO​2 back toward the physiological set       
point. The low rate of bradycardia and associated        
percent drop in heart are recorded in the annotation         
file for each observed sleeping event. Moreover,       
the process of resuming respiration may often       
involve arousal from sleep.  

To form the ​x vector for the training and         
testing, each of the utilized values from the        
annotation files needed to be in the form of a          
number. All were used as the number value        
reported in the annotation file, except the binary        
values for arousal were converted to number       
values, such that a 1 indicated existence of arousal,         
and a 0 indicated nonexistence. Some fields were        
left blank in the annotation file. These events with         
blank fields were not used in the analysis for this          
study.  

The annotation file included a classification for       
each event, either HYP for hypopnea, APNEA for        
sleep apnea, or POSSIBLE. The POSSIBLE      
notation was occasionally used, probably to      
indicated what appeared to be a sleeping event but         
one that could not be distinctly classified as either         
HYP or APNEA. A number value was assigned for         
each case, such that -1 was for HYP, +1 was for           
APNEA, and 0 for POSSIBLE. 

Training and testing data sets were derived from        
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the annotation files of four patient      
polysomnograms. The patient files were ucddb002,      
ucddb019, ucddb24, ucddb26. The sleep events for       
each patient were divided in half and placed into         
either the training set or the testing set. For some of           
the patients, the first half of the events were placed          
into the training set, and for others the second half          
of the events were placed into the training set. All          
together the four patients had 469 sleep events,        
with 236 events in the training set and 233 events          
in the testing set. The events with blank fields were          
then removed. For training, an equal number of        
HYP and APNEA events was utilized. The utilized        
training set had 40 events, and the testing set had          
28 events. 

B. Fuzzy Set Tuning Algorithm for Training 

For a training set consisting of input ​x vectors         
and matching output y values, a fuzzy set model         
was developed during a supervised training session       
by the fuzzy set tuning algorithm described below.        
This algorithm was based on prior developments       
[8, 12, 17, 20, 21]. Key details are described here. 

One ​x ​vector of input numerical values has m         
values, which were expressed as x​0​, x​1 through x​m-1​.         
The output numerical value was expressed as y.        
Fig. 1 shows the utilized membership function,       
which was an isosceles triangle centered on a​ij and         
having a width of b​ij​. For an input value of x​j​, the            
membership value of A​ij​ was calculated as follows. 

                               (1)(x )Aij j = 1 −
bij

2 |x −a |j ij
 

Where A​ij was the membership value for an x​j         
input value. The j indicated which of the ​x input          
(x​0​, x​1​, … x​m-1​), and the i indicated which fuzzy          
rule (f​0​, f​1​, … f​q-1​). Any value of A​ij less than 0 was             
nullified (set to 0). 

 

Fig. 1. Fuzzy set membership function. Function     
maps an input x​j value to the membership value that          
ranges from 0 to 1. Shape of the function was an           
isosceles triangle with height of 1.0, width of b​ij and          
centered at a​ij​. Values of x​j that were outside of          
a​ij​±(b​ij​/2) were mapped to 0. 

Each of the x​j inputs had p membership        
functions to classify the x​j value. The number of         
fuzzy rules in the model was determined as        

follows. 

                                          (2)q = pm  

where q was the number of fuzzy rules. The output          
of applying all q fuzzy rules was determined as         
follows. 

                                    (3)(x )μi = ∏
m−1

j=0
Aij j  

                                           (4)y =
∑

q−1

i=0

μi

w∑
q−1

i=0
μi i 

 

where μ​i was the product of each membership        
value for a fuzzy rule, and y was the output of           
applying all fuzzy rules to an input ​x vector. The y           
value was a scalar number. 

The method of training the membership      
functions for supervised learning was denoted as       
self-tuning [8, 20, 21], and was based on maximum         
descent [12]. A training set of n ​x vectors was          
utilized, including vectors ​x​0​, ​x​1​, … ​x​n-1​. The output         
of applying one ​x​k vector to all the fuzzy rules was           
y​k​. The error value for one ​x​k vector applied to one           
rule to determine y​k​ was calculated as follows. 

                                 (5)(y )Ek = 2
1

k − yr
k

 

where y​k​
r was the desirable or correct output value,         

used for supervised training. 

The gradients in the error for each tuning        
parameter were calculated based on an input ​x​k        
vector, as follows.  

                              (6)(y )
δwi

δEk =
μki

∑
n−1

i=0

μki

k − yr
k

 

(y ) (w ) s(x )
δaij

δEk =
μki

∑
n−1

i=0

μki

k − yr
k i − yk kj − aij

2
b A (x )ij kij kj

(7) 

(y ) (w )
δbij

δEk =
μki

∑
n−1

i=0

μki

k − yr
k i − yk

1−A (x )kij kj

b A (x )ij kij kj
(8) 

where s(g) was +1 if g was greater or equal to 0,            
and -1 if g was less than 0. 

During training, one ​x​k vector was processed       
during each timing step. The tuning parameters       
were updated after processing each input ​x​k vector        
from one training step (t) to the next (t+1) as          
follows. 

(t ) (t)wi + 1 = wi − Kw δwi

δEk  

(9) 

                         (10)(t ) (t)aij + 1 = aij − Ka δaij

δEk  

                         (11)(t ) (t)bij + 1 = bij − Kb δbij

δEk  
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Each ​x​k vector in the training set was processed         
by the fuzzy rules. After processing each ​x​k vector,         
the fuzzy membership parameters (w​i​, a​ij​, b​ij​) were        
adjusted according to eq. 9-11. The sequence of        
these tuning steps is further described below. 

An ​iteration ​was one pass through all n of the ​x​k           
vectors in the training set. A total error, S, for one           
iteration was calculated by summing up all of the         
absolute values of the E​k​ values as follows. 

2 E |S = ∑
n−1

k=0
| k (12) 

The improvement in S from one iteration to the         
next iteration is I, where I is the difference of the           
value of S from the prior iteration and the value of           
S from this iteration.  

                              (13)(t) (t ) (t)I = S − 1 − S  

The iterations of training stop when the value of         
the improvement, I, is less than a threshold value T. 

Training had two halves. During the first half,        
the fuzzy parameter of w​i values were tuned        
according to eq. (6) and (9). During this first half,          
iterations of tuning occurred until the level of        
improvement, I, was less than the threshold, T.        
Then, during the second half, the fuzzy parameters        
of a​ij and b​ij were tuned according to eq. (7-8) and           
(10-11).  

The fuzzy set model consisted of the ​a matrix         
containing the membership center points, the ​b       
matrix containing the membership widths, and the       
w array containing the weights for each rule.        
During training, the value of S was monitored.        
Models at the end of an iteration with an S value           
that did not show sufficient improvement, were       
discarded. The final trained model was the one with         
the lowest S value that did show sufficient        
improvement. For this model, the ​a and ​b matrix,         
and ​w​ array were saved to be used during testing. 

The initial position of the membership functions       
was determined by the range of values of each ​x          
input variable to be trained. The membership       
functions were distributed evenly across the range       
with about one quarter overlap on each side and         
also beyond the maximum and minimum values.       
The initial value of the w array was the inverse of           
the number of ​x​ vectors. 

C. Training and Testing 

For training of the fuzzy set tuning model, the         
inputs were the six number values that formed the ​x          
vector, and the output type y. The y output type had           
three values of -1 for HYP, +1 for APNEA, and 0           
for POSSIBLE. During training, the algorithm      
adjusted the parameters of the fuzzy set model to         
minimize differences between the output y value       

predicted by the algorithm, and the correct y value         
as derived from the annotation file. The y values         
predicted by the algorithm were scalar numbers,       
not yet mapped to the classifications. 

The process of training formed a fuzzy set        
model. This trained model was then tested to see         
how accurate the predictions were for the type of         
event. During testing, an ​x vector from the testing         
set would be applied to the trained model, resulting         
in a y prediction as a scalar number. However,         
instead of comparing the predicted and correct y        
values as a number difference as was done during         
training, the predicted y value was mapped to one         
of the three event types. Predicted y values of -0.15          
or lower were mapped to integer -1 for HYP,         
values of +0.15 or above were mapped to integer         
+1 for APNEA, otherwise the value was mapped to         
integer 0 for POSSIBLE.  

Percent Correct was the primary measure of       
how well a trained fuzzy set model was able to          
classify a testing set of data. For all the ​x vectors in            
a testing set, the number of classification errors (v)         
was found. Percent Correct (PC) was calculated as        
follows. 

C 1.0 ))P = ( − ( v
n  

 

where v was the number of classification errors for         
a testing set, n was the number of ​x vectors in the            
testing set, and PC was expressed as a percent. 

D. Comparison to Other Algorithms 

The results of the trained fuzzy set algorithm        
was compared to results by other machine learning        
algorithms for the same training and testing data        
sets. Weka is an open source, publicly available        
machine learning workbench (University of     
Waikato, http://www.cs.waikato.ac.nz/ml/weka/)  
[9, 11]. Several of the available machine learning        
algorithms were selected in Weka, and listed in        
Table I. These algorithms were used with their        
default parameters on the same training and testing        
data sets. The resulting Percent Correct was       
recorded.  

Fig. 2. Threshold of improvement for training to      
continue. The number of membership functions was       
3. The tuning variable K​w was 0.1, and both K​a and           
K​b​ were 0.01. 
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III. RESULTS 

The developed fuzzy set and tuning system was        
applied to the training set of sleep events for         
supervised learning. Afterwards, the trained model      
was applied to the testing set of sleep events.         
Several of the parameters of the model were varied         
in order to determine fuzzy set tuning parameters        
that maximize percent correct for the sleep event        
data sets. 

The threshold for the smallest improvement that       
was allowed for training to continue was varied and         
plotted in Fig. 2 with the resulting Percent Correct.         
A thresholds of 0.1 seemed to work the best. 

The number of p membership functions per       
input x parameter was varied and plotted in Fig. 3,          
with the resulting Percent Correct. Two      
membership functions seemed to work the best.  

Fig. 3. Number of membership functions per     
input x parameter. The threshold was 0.1. The tuning         
variable K​w​ was 0.1, and both K​a​ and K​b​ were 0.01. 

The tuning variable of K​w was varied for a         
range of values and plotted in Fig. 4. This         
parameter affects how much the fuzzy model       
variable w can change for one input ​x vector, as in           
eq. (9). Thus, the value is scaled for the number of           
x vectors. In the Figures, the value was normalized         
as if 100 input ​x vectors. A Value for K​w of 0.1            
seemed to work the best. 

Fig. 4. Tuning variable K​w and resulting Percent      
Correct. The number of membership functions was 2.        
The tuning variable K​w was 0.1, and both K​a and K​b           
were 0.01. 

The performance of the developed fuzzy set       
tuning system was compared to several other       
machine learning algorithms using the open source       
Weka library. Results are shown in Table I.  

IV. DISCUSSION 

A fuzzy set and tuning system was developed        
and tested on data of sleep events that was derived          
from all night polysomnogram recordings.     
Annotations of these sleep events were used for        
training and testing. The annotations files were part        
of the Physionet UCD database [14]. The input        
values for each sleep event were 1) the duration of          
the event in seconds, 2) desaturation level as lowest         
oxygen saturation (spO​2​), 3) percent drop in spO​2​,        
4) existence of arousal (binary), 5) heart rate in         
beats per minute for the Bradycardia-Tachycardia      
effect, and 6) the percent change in heart rate as a           
percent.  

TABLE I. COMPARISON WITH WEKA MACHINE LEARNING ALGORITHMS 

Classify Method 

(Weka or this study) 
Percent Correct (%) 

Multilayer Perceptron 75.0 

KStar 60.7 

Decision Table 64.3 

Decision Stump 64.3 

Fuzzy Set Tuning (this study) 67.9 

 

The developed fuzzy set tuning algorithm was       
able to be trained to make a model. The model was           
then used to classify the type of sleep event,         
whether hypopnea, sleep apnea or possible      
(indefinite). The Percent Correct for the testing data        
set was 67.9%. This was worse than the 75%         
correct result of the Multilayer Perceptron on the        
Weka system, but was better than other tested        
algorithms, such as KStar, Decision Table,      
Decision Stump. 

More testing will be required to verify       
robustness of the algorithm for sleep event       
annotation data from other patients. More robust       
classification of sleep events would aid the       
development of home based sleep monitoring      
systems. Such systems would help diagnose      
individuals in their regular place and pattern of        
sleeping, possibly leading to better diagnosis. Many       
individuals who may have sleep apnea are       
undiagnosed and thus untreated. Better diagnosis      
and treatment would enhance the quality of life for         
many people who experience sleep apnea. 
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