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Abstract—The culture dish describes the small fundamental
world resembling human brain function. Multi-site recording
system for extracellular action potentials is used for recording
the activity of living neuronal networks. The living neuronal
network is able to express several patterns independently, and
that’s meaning that it has fundamental mechanisms for intelligent
information processing. In this paper, we propose a model to
analyse logicality of signals and connectivity of electrodes in
a culture dish of rat hippocampal neurons. We call it “fuzzy
bio-indicator”. This indicator is a kind of mapping methods to
show logicality and connectivity of pulse frequency from active
potential of neuronal network. We try to analyze the dynamics of
action potentials of neuronal networks by the fuzzy bio-indicator,
and identify the logicality and connectivity of neuronal networks
through the indicator. We show here the usefulness of fuzzy
bio-indicator through numerical examples and action potential
detected from the culture neuronal network.

Index Terms—Living Neuronal Network, Culture System,
Fuzzy Connectives.

I. INTRODUCTION

The culture dish describes the small fundamental world
resembling human brain function [1]–[3]. The rat hippocampal
neurons are organized into complex networks in a culture dish
with 64 planar microelectrodes. The living neuronal network
is able to express several patterns independently, and that’s
meaning that it has fundamental mechanisms for intelligent in-
formation processing [4], [5]. In particular, many models as to
the rat hippocampal neurons which are organized in the culture
dish have been discussed [6], [7]. Bettencourt et al. [7] classify
the logicality and the connectivity of action potentials of three
electrodes on the multi-site recording system according to
their entropies and have discussed the characteristic of each
classification. However, they only discuss the static aspects
of logicality and connectivity relations among the electrodes
but not the dynamics of such connectivity concerning how the
strength of electrode connection changes when a spike is fired.
Therefore we try to analyze the dynamics of action potentials
of living neuronal networks by a structure model, and identify
the logicality and connectivity of living neuronal networks
through the model. Under the condition where spontaneous
action-potentials and evoked-action potentials in a culture dish
are contained in signal asynchronously, fuzzy model needs in
order to describe pulse rule [8]–[10].

In this paper, we propose a model to analyse logicality
of signals and connectivity of electrodes in a culture dish

of rat hippocampal neurons [11], [12]. We call it “fuzzy
bio-indicator”. This indicator is a kind of mapping methods
to show logicality and connectivity of pulse frequency from
active potential of neuronal network. We’re not sure that that
system is unique, however, we discuss here how to indicate
the logicality and the connectivity of living neuronal network.
First, we propose a new algorithm using parametric fuzzy
connectives, that consist of both 𝑡 − 𝑛𝑜𝑟𝑚 and 𝑡 − 𝑐𝑜𝑛𝑜𝑟𝑚
operators [13], [14], in order to analyse the logicality and
the connectivity of those three electrodes. Next, we classify
propagation patterns of pulse frequency to three formulations,
which are transmission, diffusion, and absorption, and we de-
fine an evaluation of fuzzy inclusion degree as corresponding
of pulse frequency between electrodes for each propagation
pattern. Finally, we plot the activity of pulse frequency in
figures as the fuzzy bio-indicator. As a result, the logicality of
neuronal network in the culture dish is described with fuzzy
connectives that consist of 𝑡−𝑛𝑜𝑟𝑚 and 𝑡− 𝑐𝑜𝑛𝑜𝑟𝑚, and the
connectivity is described with fuzzy inclusion degree for each
propagation pattern. We show here the usefulness of fuzzy
bio-indicator through numerical examples and action potential
detected from culture neuronal network.

II. NEURON CULTURE AND MULTIELECTRODE ARRAY

The conduct of all experimental procedures was governed
by The Animal Welfare, Care and Use Committee in AIST.
The hippocampus neurons were prepared from a Wister rat on
embryonic day 17-18 (E17-18) and cultured by the previously
described method [4]. Briefly, neurons were dissociated by
treatment with 0.175% trypsin (Gibco, U.S.A.) and cultured by
plating 500,000 cells in a 7𝑚𝑚 diameter-glass ring on poly-
D-lysine coated MED probe (Alpha MED Sciences, Japan),
which has 64 planar placed microelectrodes. The medium is
based on D-MEM/F12, supplemented with 5% horse serum
(Gibco, U.S.A.) and 5% fetal calf serum (Gibco, U.S.A.).

The field action potentials were recorded 10-100 days after
the start of the culture. The spontaneous action potentials
(sAPs) were gathered with the MED64 system (Alpha MED
Sciences, Japan) at a 10-20 kHz sampling rate. Evoked field
action potentials (eAPs) at 62 sites in the cultured networks
were recorded with the MED64 system at a 20 kHz sampling
rate. All experiments were carried out at room temperature
(20 − 25∘). The recorded spikes were detected by our devel-
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Fig. 1. Algorithm for Analysis of Action Potentials in Cultured Neuronal Network

oping program, sorted and classified by the amplitude versus
decay time distributions using k-means cluster cutting method
and converted to event trains.

III. LOGICALITY OF NEURONAL NETWORK

Fuzzy connective operators consist of 𝑡 − 𝑛𝑜𝑟𝑚 and 𝑡 −
𝑐𝑜𝑛𝑜𝑟𝑚 operators. The 𝑡 − 𝑛𝑜𝑟𝑚 𝑇 is a projective func-
tion expressed by 𝑇 (𝑥, 𝑦) : [0, 1] × [0, 1] → [0, 1], which
satisfies four conditions, boundary conditions, monotonicity,
commutativity and associativity. The 𝑡 − 𝑛𝑜𝑟𝑚 operator 𝑇
includes logical product, algebraic product, bounded product
and drastic product. The 𝑡 − 𝑐𝑜𝑛𝑜𝑟𝑚 operator 𝑆 is a dual
function of the 𝑡 − 𝑛𝑜𝑟𝑚 operator, which is expressed by
𝑆(𝑥, 𝑦) : [0, 1] × [0, 1] → [0, 1], and includes logical sum,
algebraic sum, bounded sum and drastic sum.

On the other hand, many parametric 𝑡 − 𝑛𝑜𝑟𝑚 and 𝑡 −
𝑐𝑜𝑛𝑜𝑟𝑚 operators have been proposed. By changing values of
parameter, a parametric fuzzy operator expresses any operator
between the drastic 𝑡−𝑛𝑜𝑟𝑚 and the drastic 𝑡− 𝑐𝑜𝑛𝑜𝑟𝑚. For
example, the parametric fuzzy operator proposed by Schweizer
[13] is expressed as follows:

𝑇 (𝑥, 𝑦) = 1− ((1− 𝑥)𝑝𝑛 + (1− 𝑦)𝑝𝑛

−(1− 𝑥)𝑝𝑛(1− 𝑦)𝑝𝑛)1/𝑝𝑛 (1)

𝑆(𝑥, 𝑦) = (𝑥𝑝𝑐 + 𝑦𝑝𝑐 − 𝑥𝑝𝑐𝑦𝑝𝑐)1/𝑝𝑐 (2)

where, 𝑝𝑛 and 𝑝𝑐 are parameters.
By changing the values of the parameter 𝑝𝑛 and 𝑝𝑐, the

Schweizer operator, 𝑡−𝑛𝑜𝑟𝑚 and 𝑡−𝑐𝑜𝑛𝑜𝑟𝑚, express logical
operator (𝑝𝑛 = 𝑝𝑐 = ∞), algebraic operator (𝑝𝑛 = 𝑝𝑐 = 1)
and drastic operator (𝑝𝑛 = 𝑝𝑐 = 0).

By the Schweizer operator, 𝑡− 𝑛𝑜𝑟𝑚 and 𝑡− 𝑐𝑜𝑛𝑜𝑟𝑚, we
formulate a new algorithm for analysing the logicality and the
connectivity of the living neuronal networks. Now, we selected
an arbitrary set of three electrodes 𝑥, 𝑦, 𝑧, and analysed a
coherence pattern between three electrodes. First, we distribute
a data set of pulse-time series in several time-bins, and define a
time-delay between time-bins of two electrodes. The proposed
algorithm is shown in Figure 1. For the electrode 𝑧, we shape
a fuzzy set of the pulse frequency, 𝐹 𝑧

𝑖 , at the 𝑖-th time-bin by
the following triangular membership function which has the
center 𝑎𝑧𝑖 and the width 𝑐𝑧𝑖 .

𝑎𝑧𝑖 =
𝑞𝑧𝑖 − 𝑙𝑞𝑧

ℎ𝑞𝑧 − 𝑙𝑞𝑧
(3)

𝑐𝑧𝑖 = ∣𝑎𝑧𝑖 − 𝐸(𝑎𝑧𝑖 )∣ (4)

where, 𝑞𝑧𝑖 is the number of pulse at the 𝑖-th time-bin, 𝑙𝑞𝑧

and ℎ𝑞𝑧 are the minimum and maximum number of 𝑞𝑧𝑖 ,
respectively. 𝐸(𝑎𝑧𝑖 ) is the average value of 𝑎𝑧𝑖 .

The membership function 𝐹 𝑥
𝑖−𝑠𝑥 with the delay 𝑠𝑥 of the

electrode 𝑥 is shaped as same as the electrode 𝑧. Our purpose
is to let the degree of coincidence, 𝜇∗

𝑥𝑧 , between 𝐹 𝑧
𝑖 and 𝐹 𝑥

𝑖−𝑠𝑥
maximize in the parametric conditions of the electrode 𝑥. To
let the degree of coincidence maximize, the width of time-bin
𝑤𝑥 and the delay 𝑠𝑥 are changed widely.

𝜇𝑥𝑧 = sup
𝑡

𝜇𝐹 𝑧
𝑖
(𝑡) ∧ 𝜇𝐹𝑥

𝑖−𝑠𝑥
(𝑡) (5)

𝜇∗
𝑥𝑧 = max

𝑤𝑥,𝑠𝑥
𝜇𝑥𝑧. (6)

We calculate 𝜇∗
𝑦𝑧 between the electrode 𝑦 and the electrode

𝑧 as same as the electrode 𝑥 and the electrode 𝑧. By ob-
taining two couples of coincidence degrees, 𝜇∗

𝑥𝑧 and 𝜇∗
𝑦𝑧 , the
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connection of electrodes is figured as a kind of connectivities
in Figures 2.

Fig. 2. Connectivity of Electrodes

Next, we calculate the output of the Schweizer operator with
two centers of membership functions, 𝑎𝑥𝑖−𝑠𝑥 of the electrode
𝑥 and 𝑎𝑦𝑖−𝑠𝑦 of the electrode 𝑦.

𝑇 (𝑎𝑥𝑖−𝑠𝑥 , 𝑎
𝑦
𝑖−𝑠𝑦 ) = 1− ((1− 𝑎𝑥𝑖−𝑠𝑥)

𝑝𝑛 + (1− 𝑎𝑦𝑖−𝑠𝑦 )
𝑝𝑛

−(1− 𝑎𝑥𝑖−𝑠𝑥)
𝑝𝑛(1− 𝑎𝑦𝑖−𝑠𝑦 )

𝑝𝑛)1/𝑝𝑛(7)

𝑆(𝑎𝑥𝑖−𝑠𝑥 , 𝑎
𝑦
𝑖−𝑠𝑦 ) = ((𝑎𝑥𝑖−𝑠𝑥)

𝑝𝑐 + (𝑎𝑦𝑖−𝑠𝑦 )
𝑝𝑐

−(𝑎𝑥𝑖−𝑠𝑥)𝑝𝑐(𝑎𝑦𝑖−𝑠𝑦 )𝑝𝑐)1/𝑝𝑐 . (8)

We minimize the error deviation between the center 𝑎𝑧𝑖 , and
the Schweizer’s output, 𝑇 (𝑎𝑥𝑖−𝑠𝑥 , 𝑎

𝑦
𝑖−𝑠𝑦 ) and 𝑆(𝑎𝑥𝑖−𝑠𝑥 , 𝑎

𝑦
𝑖−𝑠𝑦 ),

by changing the parameter 𝑝𝑛 of 𝑡 − 𝑛𝑜𝑟𝑚 and 𝑝𝑐 of 𝑡 −
𝑐𝑜𝑛𝑜𝑟𝑚.

𝑝∗ = arg min
𝑝𝑛,𝑝𝑐

(∣𝑇 (𝑎𝑥𝑖−𝑠𝑥 , 𝑎𝑦𝑖−𝑠𝑦 )− 𝑎𝑧𝑖 ∣,
∣𝑆(𝑎𝑥𝑖−𝑠𝑥 , 𝑎𝑦𝑖−𝑠𝑦 )− 𝑎𝑧𝑖 ∣). (9)

The suitable parameter 𝑝∗ represents the logicality of three
electrodes. To illustrate the proposed algorithm, we show
a simple numerical example. The spike frequency of three
examples of electrodes 𝑥 and 𝑧 are shown in Figures 3 to
5, and Table I. At each example, we search a time-bin of
electrode 𝑥 which coincides most with the spike frequency of
the sixth time-bin of electrode 𝑧. However, the ”normalized
order” of the horizontal axis in each figure normalized the
number of spike frequency within each time bin as the same
size. At the first example of Figure3, the spike frequency “2”
of the fourth time-bin of electrode 𝑥 coincided most with the
spike frequency “2” of the sixth time-bin of electrode 𝑧 with
the degree 𝜇∗

𝑥𝑧 = 1.0 of fuzzy sets. At the second and third
examples of Figure 4 and Figure 5 respectively, the spike
frequency “3” of the ninth time-bin of electrode 𝑥 coincided
most with the spike frequency “2” of the electrode 𝑧 with
𝜇∗
𝑥𝑧 = 1.0 as shown in Figure 4, and the spike frequency “1”

of the sixth time-bin of electrode 𝑥 coincided most with the
the spike frequency “1” of the sixth time-bin of electrode 𝑧
with 𝜇∗

𝑥𝑧 = 0.44 as shown in Figure 5. We should notice that
these results are understandable intuitively.

TABLE I
EXAMPLES OF ELECTRODE ANALYSIS

Time
Bin 1 2 3 4 5 6 7 8 9 10

Example 1
X 2 3 2 2 0 1 3 1 3 1
Z 0 0 1 3 1 2 0 0 0 0

CofX 0.67 1.0 0.67 0.67 0.0 0.33 1.0 0.33 1.0 0.33
WofX 0.07 0.4 0.07 0.07 0.6 0.27 0.4 0.27 0.4 0.27
CofZ 0.33
WofZ 0.27
𝜇 1.0 0.6 1.0 1.0 0.36 0.52 0.6 0.52 0.6 0.52

Example 2
X 2 3 2 0 0 1 0 1 3 1
Z 0 0 1 0 0 2 0 0 0 1

CofX 0.67 1.0 0.67 0.0 0.0 0.33 0.0 0.33 1.0 0.33
WofX 0.23 0.57 0.23 0.43 0.43 0.1 0.43 0.1 0.57 0.1
CofZ 0.33
WofZ 0.8
𝜇 0.68 1.0 0.68 0.19 0.19 0.26 0.19 0.26 1.0 0.26

Example 3
X 0 1 0 2 0 1 0 2 0 0
Z 0 0 1 2 3 1 0 0 0 0

CofX 0.0 0.5 0.0 0.1 0.0 0.5 0.0 0.1 0.0 0.0
WofX 0.3 0.2 0.3 0.7 0.3 0.2 0.3 0.7 0.3 0.3
CofZ 0.33
WofZ 0.1
𝜇 0.17 0.44 0.17 0.17 0.17 0.44 0.17 0.17 0.17 0.17

Fig. 3. Fuzzy Sets of the First Example of Electrode Analysis

IV. CONNECTIVITY OF NEURONAL NETWORK

In order to discuss the connectivity of living neuronal
network, we define propagation patterns of pulse fired at a
electrode. We define an inclusion degree of fuzzy numbers
as the connectivity of pulse frequency between electrodes for
each propagation pattern. Thus, a characteristic of pulse fre-
quency of living neuronal network is configured with logicality
of 𝑡− 𝑛𝑜𝑟𝑚 and 𝑡− 𝑐𝑜𝑛𝑜𝑟𝑚, and connectivity of this fuzzy
numerical inclusion degree.

A propagation of the pulse frequency between electrodes
is defined with three kinds of patterns, which are transmis-
sion, diffusion, and absorption as shown in Figure 6. The
transmission shows a pattern that the pulse propagates to
some direction, and the diffusion shows a pattern that the
pulse propagates with spread directions. We call diffusion
pattern with low angle a “diffusion-with-narrow-direction“. We
call diffusion pattern with high angle a “diffusion-with-wide-
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Fig. 4. Fuzzy Sets of the Second Example of Electrode Analysis

Fig. 5. Fuzzy Sets of the Third Example of Electrode Analysis

direction“. We call diffusion pattern with whole direction a
“diffusion-with-whole-direction“. In addition, the absorption
shows a pattern that the pulse propagates to some electrodes
from wide direction. In Figure 6, (a) and (b) show an unidi-
rectional transmission and an absorption respectively, and (c)
and (d) describe diffusion.

For each propagation pattern, the connectivity of neuronal
network is discussed with an inclusion degree of fuzzy num-
bers between electrodes. Figure 7 shows the inclusion degree
of fuzzy numbers. The fuzzy inclusion degree means how
degree of a fuzzy number of the pulse frequency is included
by other pulse frequency. Now, the width of fuzzy number

Fig. 6. Propagation Patterns

𝑋,𝑌 , and 𝑍 is described by 𝐷𝑋 , 𝐷𝑌 , and 𝐷𝑍 respectively.
A fuzzy inclusion degree 𝛾 of fuzzy number 𝑍 with fuzzy
number 𝑋 and 𝑌 is defined as follows;

𝛾 = 𝐷𝑋/𝐷𝑍 ×𝐷𝑌 /𝐷𝑍 (10)

where, the degree 𝛾 get closer to one when the inclusion level
of fuzzy numbers is high, and then the connectivity between
electrodes is tight.

V. INDICATOR OF LOGICALITY AND CONNECTIVITY

To indicate the logicality and connectivity of neuronal
network, we should discuss delay time of pulse propagating
to a neighbor electrode from a certain electrode. Since the
propagation speed of a pulse is approximately 100𝑚/𝑠, and
distance between electrodes is 450𝜇𝑚, the delay time between
electrodes is 0.0045𝑚𝑠. However, we estimated propagation
time between electrodes at 10𝑚𝑠 because the connection of
neuronal network is not straight, and chemical neurotransmit-
ter and synapse delay at the synapse have to be considered. In
addition to parameters for analysing action potential, sampling
frequency of the MED64 is 20kHz, and the time-bin is
obtained at 4𝑠 in consideration of the overlap of time data.
The number of time-bins is 30 because the measurement time
is 120𝑠.

For analysing action potential in Figure 6, we set a couple
consisting of the number of the electrode 𝑧 and the time period
of time-bin as follows;

𝑎 : (19𝑒𝑙, 44𝑠− 48𝑠)

𝑏 : (3𝑒𝑙, 88𝑠− 92𝑠), (4𝑒𝑙, 88𝑠− 92𝑠), (11𝑒𝑙, 88𝑠− 92𝑠)

𝑐 : (31𝑒𝑙, 88𝑠− 92𝑠)

𝑑 : (39𝑒𝑙, 80𝑠− 84𝑠).

Figure 8 shows a result of transmission of pulse frequency,
and Figure 9 shows a histogram in the transmission state.
In Figure 8 the horizontal axis expresses parameter values
𝑝𝑛 and 𝑝𝑐 of fuzzy connectives, and the vertical axis shows
the inclusion degree 𝛾 of fuzzy numbers. In Figure 9, the
horizontal axis expresses parameter values 𝑝𝑛 and 𝑝𝑐 of fuzzy
connectives. The vertical axes show the normalized frequency

Fig. 7. Inclusion Degree of Fuzzy Numbers
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Fig. 8. Transmission of Pulse Frequency

Fig. 9. Histogram in Transmission State

of fuzzy connectives as histogram format, and the average
inclusion degree 𝛾 of fuzzy numbers as straight line. The 75
most suitable parameters exist near 𝛾 = 1.29 and 𝑝𝑐 = 430.0.
The 14 suitable parameters exist near 𝛾 = 0.0 and 𝑝𝑐 = 1.0. In
addition, the suitable parameters are distributed near 𝛾 = 3.85
and 𝑝𝑛 = 508.0, and 𝛾 = 3.97 and 𝑝𝑐 = 508.0. As a result,
the most suitable parameters are located at 𝛾 = 1.29 and
𝑝𝑐 = 430.0 from Figure 9. We should notice that the fuzzy
connective operator is adjusted to a weak OR because the
parameter 𝑝𝑐 = 430.0 means the logical sum.

Fig. 10. Narrow Diffusion and Absorption of Pulse Frequency

Fig. 11. Histogram in Narrow Diffusion and Absorption State

Figure 10 shows a result of diffusion-with-narrow-direction,
and absorption of pulse frequency. Figure 11 shows the
histogram. The most suitable parameters exist near 𝛾 = 2.33
and 𝑝𝑐 = 30.0, and 𝛾 = 3.79 and 𝑝𝑐 = 37.7. In addition, the
suitable parameters exist near 𝛾 = 1.72 and 𝑝𝑛 = 10.7, As a
result, the most suitable parameters are located at 𝛾 = 2.33
and 𝑝𝑐 = 30.0, and 𝛾 = 3.79 and 𝑝𝑐 = 37.7 from Figure 11.
We should notice that the fuzzy connective operator is adjusted
to a weak OR relatively because the parameter 𝑝𝑐 = 30.0 and
𝑝𝑐 = 37.7 means the logical sum.

Fig. 12. Wide Diffusion of Pulse Frequency

Fig. 13. Histogram in Wide Diffusion State
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Figure 12 shows a result of diffusion-with-wide-direction
of pulse frequency, and Figure 13 shows a histogram in the
diffusion-with-wide-direction state. The degrees 𝛾 of many
suitable parameters get closer to one, and then the connectivity
between electrodes is tight. The 104 most suitable parameters
exist near 𝑝𝑐 = 630.3. The 13 suitable parameters exist near
𝑝𝑐 = 30.0, the 18 suitable parameters exist near 𝑝𝑐 = 206.6,
and the 26 parameters exist near 𝑝𝑐 = 349.8. The 4 suitable
parameters exist near 𝑝𝑛 = 397.5. In particular, the most
suitable parameter is located at 𝑝𝑐 = 630.3. We should notice
that the fuzzy connective operator is adjusted to a weak OR
because the parameter 𝑝𝑐 = 630.3 means logical sum.

Fig. 14. Whole Diffusion of Pulse Frequency

Fig. 15. Histogram in Whole Diffusion State

Figure 14 shows a result of diffusion-with-whole-direction
of pulse frequency, and Figure 15 shows a histogram in the
diffusion-with-whole-direction state. The suitable parameter
spreads around 𝑝𝑛 = 200.0. The fuzzy connective operator is
adjusted to a weak AND because the parameter means logical
product. However, the operator does not converge the specific
values. That means that various kinds of the AND-logicality
are mixed when the pulse frequency spreads in all directions.

From the overall result, we notice that the inclusion degree
becomes higher and the fuzzy operator moves to the logical
product from the logical sum, when the diffusion range is
wide. In other words, the pulse is sure propagating without a

loss of frequency when the propagation spreads with various
kinds of operators widely.

VI. CONCLUSION

In this paper, we discussed how to indicate logicality and
connectivity of living neuronal network with fuzzy connective
operators and fuzzy inclusion degree. We should analyse the
relationship between pulse of living neuronal networks and
propagation pattern more deeply in the near future.
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