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Abstract. Brain-computer interface (BCI) and brain-machine interface
(BMI) technologies have recently entered the research limelight. In many
such systems, external computers and machines are controlled by brain
activity signals measured using near-infrared spectroscopy (NIRS) or
electroencephalograph (EEG) devices. In this paper, we propose a new
boosting algorithm for BCI using a possibilistic data interpolation scheme.
In our model, interpolated data is generated around classification errors
using membership function, and the class attribute is decided by a rule
with three kinds of criterions. By using the interpolated data, the dis-
criminated boundary is shown to control the external machine effectively.
We verify our boosting method with some numerical examples in which
NIRS data is assumed to detect from subjects, and discuss the results.

Keywords: Brain-Computer Interface, Boosting Algorithm, Possibilis-
tic Data Interpolation.

1 Introduction

Recently, many papers on brain-computer interfaces (BCIs) have been pub-
lished[1]. Brain activity signals are measured using near infra-red spectroscopy
(NIRS) [2–4] and electroencephalographic (EEG) devices [5]. The classification
model has been proposed to extract the discriminated boundaries in order to
control an external machine and computer. However, the outer machine and
computer are unable to follow dynamic changes because in particular the iden-
tified model is suitable to the brain prior-activity data. On the other hand, en-
semble learning models [6–8] are applied to the pattern classification problems.
AdaBoost [9, 10] is a remarkable boosting method[11, 12]. AdaBoost consists of
multiple weak classifiers which are identified by assigning high weights to the
misclassified data. The final output is determined using the result of a majority
rule decision between the multiple weak classifiers. We have already proposed a
boosting algorithm for brain computer interface as a discriminant model. We call



the method pdi-Boosting (Probabilistic Data Interpolation-Boosting)[16–19] be-
cause interpolated data generate around misclassified data by a given probability
density function.

In this paper, we propose a new boosting algorithm which interpolates data
around misclassified data using a given membership function of fuzzy set. We call
our method PosDI-Boosting (Possibilistic Data Interpolation-Boosting). Since
PosDI-Boosting generates the interpolated data around the misclassified data
by fuzzy sets, we can obtain a discriminant boundary with inherent robustness
based on human rules. However, the interpolated data around the misclassified
data are put as a class same as misclassified data. The class of interpolated data
may not be necessarily put as the class same as the misclassified data. Thus,
we propose a method to determine classes of interpolated data[20]. Three eval-
uation criterions, which are the evaluation of misclassified data, the evaluation
of classification classes, and the evaluation of neighborhood classes, are defined,
and the interpolated data is put as the class using the total evaluation formu-
lated by three criterions. In AdaBoost, the discriminant curve is updated only by
chosen individual data because Adaboost only updates the weight for the data.
However, a discriminant curve of PosDI-Boosting draws a smoother trace by the
whole number of data which generated around the misclassified data. Therefore,
the recognition rate of PosDI-Boosting is better than AdaBoost.

First, we formulate the PosDI-Boosting algorithm. Second, we apply our
method to an experiment in which brain activity is measured using a NIRS
device to demonstrate the effectiveness of PosDI-Boosting. Finally, we propose
an enhanced PosDI-Boosting algorithm and show the usefulness of our method
by numerical examples which is easy issue to classify to two classes daringly to
clarify characteristic difference between Adaboost and PosDI-Boosting.

2 Formulation of PosDI-Boosting

AdaBoost [9, 10] is an outstanding boosting method. In each iteration we se-
lect training data (TRD) from the set of misclassified data with high weights
of over 50%, and then apply this data to a weak classifier in the consecutive
iteration. After identifications are made by the weak classifier, the weights of
the data are updated. After iterating the procedure sequentially, the final out-
put is determined by majority rule decision of the multiple weak classifiers
M1,M2, · · · ,Mi, · · · ,ML, when the checking data (CHD) is given to these mod-
els.

A conceptual diagram of PosDI-Boosting is shown in Fig. 1. In the PosDI-
Boosting algorithm, new data are interpolated around the misclassified data
using a membership function of fuzzy set instead of the updating of the weights
as in AdaBoost. Similar to AdaBoost, the final output is determined by a rule
of majority decision using the multiple weak classifiers, when the checking data
(CHD) is given to these models. However, the difference between AdaBoost
and PosDI-Boosting is that the amount of data in PosDI-Boosting increases as
compared to AdaBoost as shown in Fig. 2. Therefore, a discriminant curve of



PosDI-Boosting draws a smoother trace by the whole number of data which
generated around the misclassified data. The recognition rate of PosDI-Boosting
is better than AdaBoost.

Fig. 1. Conceptual Diagram of PosDI-Boosting

We assume that the misclassified data is given as the d-th datum in TRD, and
the j-th attribute of the d-th data is denoted by xF

j (d). The interpolated datum

xint
j (d) is generated by a membership function µF (xj) of fuzzy set F around the

misclassified datum xF
j (d) when a level h, 0 ≤ h ≤ 1 is given randomly.

xint
j (d) = {xj | µF (xj) = h, µF (x

F
j (d)) = 1} (1)

h ∼ N(1, 1), 0 ≤ h ≤ 1 (2)

, where xF
j (d) is the center of the fuzzy set F

In general we choose L-function with the width c, and the normal distribution
function with the standard deviation σ as a membership function µF (xj) as
follows:

µF (xj) = L(
xj − xF

j (d)

c
), c ≤ 0 (3)

µF (xj) =
1√
2πσ2

exp(−
(xj − xF

j (d))
2

2σ2
) (4)

As an example of L(x)-function, we usually adopt triangle membership func-
tion L(x) = max(0, 1 − |x|). We may also adopt a uniform distribution as



Fig. 2. Conceptual Difference between AdaBoost and PosDI-Boosting

follows:

µF (xj) =

{
1

xmax
j

−xmin
j

; xmin
j ≤ xj ≤ xmax

j

0 ; xj < xmin
j , xj > xmax

j

(5)

where xmax
j and xmin

j are defined as

xmin
j =

3xF
j (d) + xj(d− 1)

4
(6)

xmax
j =

3xF
j (d) + xj(d+ 1)

4
(7)

and xj(d − 1) and xj(d + 1) denote the (d − 1)-th and the (d + 1)-th datum,
respectively.

We formulate the algorithm of PosDI-Boosting as follows:

Step 1 The brain activity data D of size W is divided into two data sets: the
training data DTRD with the size WTRD, and the checking data DCHD

with the size WCHD, where W = WTRD + WCHD. In addition, the
interpolated data from D is denoted by DINT .

Step 2 The training data DTRD is given as input into the i-th weak classifier
Mi. The recognition rate rTRD

i is calculated and the result given as Ri.



Step 3 The d-th misclassified datum is selected from DTRD. With this d-th da-
tum, a new interpolated datum xint

j (d) is generated around xF
j (d) of the

j-th attribute by the membership function µF (xj) defined in equations
(1) and (2), and this new datum xint

j (d) is saved to DINT .

Step 4 Interpolated data are extracted from DINT until the number of misclas-
sified data are the same as the number of correctly classified data, where
the number of interpolated data v satisfies

v ≥ W

2
−WTRD(1− rTRD

i ). (8)

Step 5 Let θ be the threshold value and K is the number of iterations. The
algorithm terminates when either one of the conditionsK = i, rCHD

i ≥ θ
or i ≥ K is satisfied.

Step 6 We apply DCHD to M1, M2, · · · , Mi, · · · , MK to obtain the final
discriminant result with recognition rate rCHD

i .

Since new data are added around the misclassified data using a membership
function, and in each successive iteration the weak classifier fits the misclassi-
fied data closer than in the previous iteration, the final result will more closely
approximate the given data.

3 NIRS Signal Measurement Experiment of Calculation
Task

As an application of PosDI-Boosting to NIRS measurement tasks, we performed
the following experiment. We assigned subjects the task of performing a simple
arithmetic calculation, and measured brain activity during the task using a NIRS
device. We used the 2ch NIRS device (YN-502, Excel of Mechatronics Company,
Tokyo, Japan). This device is able to measure the oxyhemoglobin (oxy-Hb) and
deoxyhemoglobin (doxy-Hb) at two electrodes with the wavelength 770nm and
840nm with period 0.098s. Our brain signal data sets consist of the above four
attributes measurable by our NIRS device.

We gave a simple test consisting of arithmetic addition problems to our sub-
jects as the experimental task. The test consisted of a simple addition problem
that does not require carrying of decimals, similar to elementary school first
grade level problems. We confirmed the ability of three subjects to perform the
task, which is the subject’s age, sex, dominant arm, health condition, and their
ability to perform specific calculations before experiment. The experiment con-
sisted of 5 trials that we called a set, and was 250 seconds in total. A trial is 50
seconds which consists of a 10 second pre-rest, a 10 second interval allotted for
our simple arithmetic calculation test and 30 seconds of a post-task resting. We
show the experiment protocol of the arithmetic calculation test in Figure 3. To
serve as our three subjects, we selected one man and two women, and performed



Fig. 3. Timing Protocol of Experiment

12 sets of trials with each subject extended over a period of several days. In the
trials, we placed the two electrodes of the NIRS device on prefrontal areas Fp1

and Fp2 as described in the ten-twenty electrode system of the American Elec-
troencephalographic Society. The discrete-valued data sets D of brain signals
were created from a randomly selected 10 trials by each of the three subjects.

In Figures 4 and 5 we show the change in cerebral blood flow of subject A,
which is the brain activity signal measured by NIRS equipment. Figure 4 shows
the change in flow of oxy-Hb and doxy-Hb measured at the right side electrode,
and Figure 5 shows that of the left side electrode. In Figure 5, we see that when
the task is started at 10s, the flow of oxy-Hb increases, and the flow of doxy-Hb
decreases. After the task finishes at 20s, both cerebral blood flow rates gradually
return to the normal steady state.

Fig. 4. Cerebral Blood Flow Change of Right Side Electrode



Fig. 5. Cerebral Blood Flow Change of Left Side Electrode

Next, we explain a model for cerebral blood flow changes using the PosDI-
Boosting algorithm. We choose the uniform distribution to be the membership
function µF (xj), and we use REPTree as our weak classifier. The termination
rule for the algorithm is set to be at iteration number K = 3. We set the size of
data set D to be W = 490. However, we also set W = WTRD = WCHD = 490
and D = DTRD = DCHD as we did not have ample data in this experiment.

First, we fed the data set DTRD
1 into the first weak classifier M1 and obtained

the recognition rate rTRD
1 = rCHD

1 = 91.22% as result R1. The interpolated
datum d1 is randomly selected from DINT and applied to the next weak classi-
fier, until the number of the interpolated data becomes equal to the number of
correctly identified data. The number of data points in DTRD

2 is WTRD
2 = 894

because the number of interpolated data in d1 is 404.

In the next step, we input DTRD
2 into the second weak classifier M2 and obtain

the recognition rate rCHD
2 = 92.24% as result R2. The recognition rate of M3

is rCHD
3 = 93.67%, and the algorithm stops running finished by the termination

rule for K = 3.

From the three results R1, R2, and R3 the majority rule yields a final result
of 95.31% for the recognition rate. The number of interpolated data points as
well as the recognition rates are summarized in Table 1.

Next, we discuss the recognition rates for the three individual subjects. We
show that the average recognition rate for each step in Table 2. In the case of
subject B, the recognition rate in the three consecutive steps are 93.69%, 93.47%,
and 93.33%, respectively. However, the total recognition rate determined by the
majority rule is 94.78%, higher by a full 1.0% than the recognition rates in the
individual three steps. This phenomena is apparent in case of the other two



Table 1. Recognition Rates and Number of Interpolated Data

Recognition Interpolated Data
Model Rate(%) (for next step) TRD CHD

M1 91.22 404 490 490
M2 92.24 414 894 490
M3 93.67 428 904 490

PosDI-Boosting
(TRD) 95.31

subjects as well. The results are remarkable as the higher recognition rates in
the total recognition rate show the effectiveness of PosDI-Boosting.

Table 2. Recognition Rate for Individual Subjects

Subjects rCHD
1 (%) rCHD

2 (%) rCHD
3 (%) Results(%)

A 90.33 90.29 90.51 91.04
B 93.69 93.47 93.33 94.78
C 92.13 88.37 88.01 94.16

Average 92.13 91.62 92.06 93.10

Finally, we compare PosDI-Boosting with REPTree and other conventional
Boosting algorithms. The comparison results are summarized in Table 3. The
comparison of PosDI-Boosting and REPTree, shows that the recognition rate
of PosDI-Boosting is only 0.97% higher than that of REPTree on average for
all three subjects. In addition, the recognition rate of PosDI-Boosting shows a
significant difference (p = 0.01616) as compared with REPTree by the t-test
with significance level 0.05%.

On the other hand, comparing PosDI-Boosting with the other boosting meth-
ods, AdaBoost and MultiBoost, the recognition rate of PosDI-Boosting is only
0.3% higher than that of AdaBoost, and 1.7% higher than that of MultiBoost in
subject A. In subject A, the recognition rate of PosDI-Boosting is only 1.2%
higher than MultiBoost, but the recognition rate became lower by a small
0.33% than for AdaBoost. Unfortunately, the recognition rate of PosDI-Boosting
couldn’t show a significant difference as compared with other boosting methods
by the multiple comparison of Tukey method. However, the recognition rate of
PosDI-Boosting shows a significant difference (p = 0.0006860) compared with
MultiBoost by the t-test with significance level 0.05%. The recognition rate of
PosDI-Boosting is only 0.56% higher than AdaBoost, but we could not show a



significant difference (p = 0.1578) as compared to AdaBoost by the t-test with
significance level 0.05%.

Table 3. Comparison of the Proposed and Existing Models

PosDI-Boosting AdaBoost MultiBoost REPTree
Subjects (%) (%) (%) (%)

A 91.04 90.33 90.38 90.33
B 94.78 94.24 93.57 93.69
C 94.16 94.39 92.96 92.92

Average 93.10 92.54 92.14 92.13

As a result, we may conclude that recognition rates using PosDI-Boosting are
higher than those of other Boosting methods. Therefore, the use of the proposed
PosDI-Boosting algorithm is advantageous in practical BCI applications.

Fig. 6. Evaluation E1

4 Enhanced PosDI-Boosting

The interpolated data around the misclassified data were put as a class same as
misclassified data. However, the class of interpolated data may not be necessarily



put as the class same as the misclassified data. Therefore we propose a new
class decision method to decide the class of interpolated data. Assume that the
interpolated datum xint

j (d) is generated from the misclassified datum xF
j (d).

Three evaluation criterions, which are the evaluation of misclassified data E1,
the evaluation of classification classes E2, and the evaluation of neighborhood
classes E3, is defined, and the interpolated data xint

j (d) is put as a class k∗.

(1) Evaluation of Misclassified Data

Evaluation Ej1 is defined by the membership function µE1(x
int
j (d)), and that

represents the dependence of the interpolated data to the misclassified data (See
in Fig. 6). Evaluation Ej1 shows that the dependence of the interpolated data
to the misclassified data is high when Ej1 of the interpolated data is large.

Ek
j1 =

{
1− µE1(x

int
j (d)), for k ∈ {xF

j (d)}
µE1(x

int
j (d)), for k /∈ {xF

j (d)}
(9)

Fig. 7. Evaluation E2

(2) Evaluation of Classification Classes

Evaluation Ej2 is defined by distance between the interpolated data and the
center of each classification class (See in Fig. 7). Evaluation Ej2 shows that the
dependence of the interpolated data to the classification class is high when Ej2

of the interpolated data is small.

Ek
j2 =

|xint
j (d)− xk

c | −mini|xk
i − xk

c |
maxi|xk

i − xk
c | −mini|xk

i − xk
c |
, for ∀i



Fig. 8. Evaluation E3

where, xk
c is the center of the classification class k.

(3) Evaluation of Neighborhood Classes

Evaluation Ej3 is defined by distance to data xN
j which is the nearest to the

interpolated datum in each classification class (See in Fig. 8). Evaluation Ej3

shows that the dependence of the interpolated data to the neighborhood class is
high when Ej3 of the interpolated data is small.

Ek
j3 =

|xN
j − xint

j (d)| −mini|xk
i − xint

j (d)|
maxi|xk

i − xint
j (d)| −mini|xk

i − xint
j (d)|

for ∀i

The evaluation E1 is large when interpolated datum is generated around the
misclassified datum, and the evaluation E2 is large when interpolated datum is
generated around the center of the identification class. On the other hand, the
evaluation of the class distribution around interpolated datum is calculated in
evaluation E3.

Evaluation Ek
j is calculated by the weighted summation of these three evalu-

ation in each j attribute. The class of interpolated data xint
j (d) is defined as k∗

where the total evaluation Ek of n attributes is minimized.

k∗ = {k|min
k

Ek = min
k

n∑
j=1

Ek
j } (10)

Ek
j = w1E

k
j1 + w2E

k
j2 + w3E

k
j3 (11)

where, w1, w2, w3 is weight at each evaluation, respectively.



We formulate the algorithm of enhanced PosDI-Boosting as follows:

Step 1 The brain activity data D of size W is divided into two data sets: the
training data DTRD with the size WTRD, and the checking data DCHD

with the size WCHD, where W = WTRD + WCHD. In addition, the
interpolated data from D is denoted by DINT .

Step 2 The training data DTRD is given as input into the i-th weak classifier
Mi. The recognition rate rTRD

i is calculated and the result given as Ri.

Step 3 The d-th misclassified datum is selected from DTRD. With this d-th da-
tum, a new interpolated datum xint

j (d) is generated around xF
j (d) of the

j-th attribute by the membership function µF (xj) defined in equations
(1) and (2).

Step 4 The class k∗ of the interpolated datum xint
j (d) is distinguished by equa-

tions (10) and (11). This new datum xint
j (d) is saved to DINT .

Step 5 Interpolated data are extracted from DINT until the number of misclas-
sified data are the same as the number of correctly classified data, where
the number of interpolated data v satisfies.

Step 6 Let θ be the threshold value and K is the number of iterations. The
algorithm terminates when either one of the conditionsK = i, rCHD

i ≥ θ
or i ≥ K is satisfied.

Step 7 We apply DCHD to M1, M2, · · · , Mi, · · ·, MK to obtain the final
discriminant result with recognition rate rCHD

i .
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5 Evaluation of Enhanced PosDI-Boosting

We simulate examples of signals as two-cluster problem using numerical data
to discuss the evaluation on enhanced PosDI-Boosting. We assume that brain
activity signals of 490 are normalized to lie in the range [0, 1] and [−1, 0], and
the value of the data corresponding to the steady state to be 0, and that to the
activation state to be 1 or -1. We add four types of noise to the signals consisting
of normally distributed random numbers with standard deviation s. We choose
the normal distribution function to be the membership function µF (xj), and we
adopted REPTree as the weak classifier, which is a type of decision tree method.
The termination rule for the algorithm is set to be at iteration number K = 3.

The four patterns are given in Fig. 9 to 12, respectively.

Weights: w1 = w2 = w3 = 1/3
Standard deviation σ = 0.0001
Standard deviation s = 0.2, 0.4, 0.6, 0.8

We compare enhanced PosDI-Boosting with normal PosDI-Boosting, REPTree
and other conventional Boosting algorithms, and we discuss the recognition rates
at the different standard deviation. The comparison results are summarized in
Table 4. We show that the average recognition rate is 10 times that of the distur-
bance data. In Table 4, the recognition rate of enhanced PosDI-Boosting is shown
to be slightly higher than that of other methods with standard deviation s rang-
ing from 0.2 to 0.8. The comparison of enhanced PosDI-Boosting and normal
PosDI-Boosting, shows that the recognition rate of enhanced PosDI-Boosting
is only 1.28% higher than that of normal PosDI-Boosting on average for all
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four patterns. In addition, comparing enhanced PosDI-Boosting with the other
methods, AdaBoost, MultiBoost and REPTree, the recognition rate of enhanced
PosDI-Boosting is only 0.58% higher than that of AdaBoost, 1.05% higher than
that of MultiBoost and 2.53% higher than that of REPTree on average for all
four patterns. Unfortunately, the recognition rate of enhanced PosDI-Boosting
couldn’t show a significant difference as compared with other boosting methods
by the multiple comparison of Tukey method. However, the recognition rate of
enhanced PosDI-Boosting shows a significant difference (p = 0.000037) as com-
pared with normal PosDI-Boosting by the t-test with significance level 0.01%.
Looking at these results, enhanced PosDI-Boosting is more accurate than other
boosting methods even though the significance of enhanced PosDI-Boosting is
not clear by a test.

At the stage K = 1 of the standard deviation s = 0.8, the number of all
data became 866. Since the number of original data is 490, 376 as difference
data are the interpolated data. The interpolated data which changed the class
by new evaluation algorithm set off 67.0% of the total data. In those data,
the interpolation data which were changed from the steady state ”zero” to the
activation state ”one” were 73, and the interpolated data changed the steady
state from the activation state were 181. We should notice that the recognition
rate of PosDI-Boosting is having improved by the change of these classes more.
Therefore, we conclude that the use of the proposed PosDI-Boosting algorithm
is advantageous in practical BCI applications.
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Table 4. Comparison of Enhanced pdi-Boosting with Other Methods

Enhanced PosDI-Boosting Ada Multi REP
SD PosDI-Boosting (Uniform) Boost Boost Tree

(%) (%) (%) (%) (%)

0.2 99.81 99.63 99.80 99.76 99.37
0.4 97.32 96.18 96.57 94.84 97.14
0.6 92.65 90.05 91.22 91.22 92.41
0.8 88.78 87.69 88.63 88.55 88.33

Average 94.64 93.38 94.06 93.59 92.11

6 Conclusion

In this paper, we formulated a classification method based on a boosting algo-
rithm using a possibilistic data interpolation scheme. We propose a new class
decision method to decide the class of interpolated data. In addition, we showed
our method in an experiment in which brain activity is measured using a NIRS
device, and discussed the effectiveness of our new approach with numerical exam-
ples by comparing its performance to that of conventional boosting algorithms.
In future work, we plan to discuss how to optimize the membership functions,
and how to apply this method to a range of practical BCI problems.
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