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Abstract—Brain-computer interface (BCI) have recently en-
tered the research limelight. In many such systems, exter-
nal computers and machines are controlled by brain activity
signals measured using near-infrared spectroscopy (NIRS) or
electroencephalograph (EEG) devices. In this paper, we propose
a probabilistic data interpolation-boosting algorithm for BCI,
where we adopt three evaluation criterions to decide the class
of interpolated data around the misclassified data. By using
the interpolated data with classes, the discriminated boundary
is shown to control the external machine effectively. We verify
our boosting method with numerical examples, and discuss the
results.

Index Terms—Brain-Computer Interface, Boosting Algorithm,
Probabilistic Data Interpolation.

I. INTRODUCTION

We have proposed a boosting algorithm [1], [2] for brain
computer interface [3], which interpolates data around mis-
classified data in order to extract the signals discriminated
boundaries. We call our method pdi-Boosting (Probabilistic
Data Interpolation-Boosting) [4]–[7]. In the BCIs, brain ac-
tivity signals are measured using near infra-red spectroscopy
(NIRS) [8]–[10] and electroencephalographic (EEG) devices
[11]. Then, the external machine and computer are controlled
by the models of the pdi-Boosting identified from brain
activity signals. The pdi-Boosting consists of multiple weak
classifiers, and the final output is determined by the result of
a majority rule decision between the weak classifiers, done to
improve overall discriminant accuracy. However, the external
computer is sometimes unable to follow dynamic changes as
the identified model uses prior brain activity data. Because,
the interpolated data around the misclassified data are put as a
class same as misclassified data. Thus, the class of interpolated
data may not be necessarily put as the class same as the
misclassified data.

In this paper, we propose a new class decision method
to decide the class of interpolated data. The class of the
interpolated data is not labeled by the misclassified data.
Instead, three evaluation criterions, which are the evaluation of
misclassified data, the evaluation of classification classes, and
the evaluation of neighborhood classes, are defined, and the
interpolated data is put as the class. The discriminant model
of the enhanced pdi-Boosting is characterized by the addition
to the class of new data generated around the misclassified
data using the evaluation criterion. On the other hand, the

discriminant curve is updated only by chosen individual data
because Adaboost only updates the weight for data when the
data set is constituted. A discriminant curve of pdi-Boosting
draws a smoother trace by the difference of the number of data
which give the influence to the curve, and the recognition rate
of pdi-Boosting is improved. Therefore, as the enhanced pdi-
Boosting generates interpolated data with the new class around
the misclassified data, we can obtain a discriminant boundary
with inherent robustness, and the external computer is able to
follow dynamic changes in the environment. We evaluate the
enhanced pdi-Boosting for BCI by numerical examples. We
show usefulness of pdi-Boosting by the numerical example
which is easy issue to classify to two classes daringly to clarify
characteristic difference between Adaboost and pdi-Boosting.
First, we explain the pdi-Boosting algorithm and discuss the
characteristics of pdi-Boosting by simple numerical examples
where we add various amounts of disturbances. Second, we
propose the enhanced pdi-Boosting algorithm and show the
usefulness of our method by simple numerical examples.

II. FORMULATION OF PDI-BOOSTING

AdaBoost [12], [13] is an outstanding boosting method. In
each iteration we select training data (TRD) from the set
of misclassified data with high weights of over 50%, and
then apply this data to a weak classifier in the consecutive
iteration. After identifications are made by the weak clas-
sifier, the weights of the data are updated. After iterating
the procedure sequentially, the final output is determined
by majority rule decision of the multiple weak classifiers
M1,M2, · · · ,Mi, · · · ,ML, when the checking data (CHD)
is given to these models.

In the pdi-Boosting algorithm, new data is interpolated
around the misclassified data using a probability density
function instead of the updating of the weights as in AdaBoost.
A conceptual diagram of pdi-Boosting is shown in Fig. 1; the
algorithm is as follows. Similar to AdaBoost, the final output
is determined by a rule of majority decision using the multiple
weak classifiers, when the checking data (CHD) is given
to these models. However, the difference between AdaBoost
and pdi-Boosting is that the amount of data in pdi-Boosting
increases as compared to AdaBoost as shown in Fig. 2.

Assume that the misclassified data is given as the d-th data
in TRD, and the j-th attribute of the d-th data is denoted



Fig. 1. Conceptual Diagram of pdi-Boosting

Fig. 2. Conceptual Difference between AdaBoost and pdi-Boosting

by xF
j (d). The interpolated data xint

j (d) is generated by a
probability density function f(xj) around the misclassified
data xF

j (d) with mean value.

xint
j (d) = {xj ∈ A | P (A) =

∫
A

f(xj)dxj} (1)

In general we choose the normal distribution function to be
our probability density function f(xj) with standard deviation
σ as follows:

f(xj) =
1√
2πσ2

exp(− (xj − xj(d))
2

2σ2
). (2)

However, we may also adopt a uniform distribution as
follows:

f(xj) =

{
1

xmax
j −xmin

j
; for xmin

j ≤ xj ≤ xmax
j

0 ; for xj < xmin
j or xj > xmax

j

(3)

where xmax
j and xmin

j are defined as

xmin
j =

3xj(d) + xj(d− 1)

4
(4)

xmax
j =

3xj(d) + xj(d+ 1)

4
(5)

and xj(d − 1) and xj(d + 1) denote the (d − 1)-th and the
(d+ 1)-th data, respectively.

We formulate the algorithm of pdi-Boosting as follows:

Step 1 The brain activity data D of size W is divided to
two data sets: the training data DTRD with the size
WTRD, and the checking data DCHD with the size
WCHD, where W = WTRD +WCHD. In addition,
the interpolated data from D is denoted by DINT .

Step 2 The training data DTRD is given as input into the
i-th weak classifier Mi. The recognition rate rTRD

i

is calculated and the result given as Ri.

Step 3 The d-th misclassified data is selected from DTRD.
With this d-th data, a new interpolated data xint

j (d)
is generated around xF

j (d) of the j-th attribute by
the probability density function f(xj) defined in
equations (2) through (5), and this new data xint

j (d)
is saved to DINT .

Step 4 Interpolated data are extracted from DINT until
the number of misclassified data are the same as
the number of correctly classified data, where the
number of interpolated data v satisfies

v ≥ W

2
−WTRD(1− rTRD

i ). (6)

Step 5 Let θ be the threshold value and K is the number of
iterations. The algorithm terminates when either one
of the conditions K = i, rCHD

i ≥ θ or i ≥ K is
satisfied.

Step 6 We apply DCHD to M1, M2, · · · , Mi, · · · , MK

to obtain the final discriminant result with recogni-
tion rate rCHD

i .

Because new data is added around the misclassified data
using a probability density function, and in each successive
iteration the weak classifier fits the misclassified data closer
than in the previous iteration, the final result will more closely
approximate the given data.

III. EVALUATION OF PDI-BOOSTING

We simulate examples of signals using numerical data
to discuss the evaluation on pdi-Boosting. We assume that
oxyhemoglobin (oxy-Hb) and deoxyhemoglobin (doxy-Hb)
data are normalized to lie in the range [0, 1], where the number
of clusters is 2. We assume the value corresponding to the
steady state to be 0, and that to the activation state to be 1.
We add five types of noise to the signals consisting of normally
distributed random numbers of 500 with standard deviation s
as follows:



Number of data: 2, 5, 10, 20, 30, 50, 75, 100, 250, 350, 500
Standard deviation σ = 0.005, 0.01, 0.05, 0.1, 0.2, 0.6, 1.0
Standard deviation s = 0.2, 0.4, 0.6, 0.8, 1.0

We choose the normal distribution function to be the prob-
ability density function f(xj), and we adopted REPtree as
the weak classifier, which is a type of decision tree method.
The termination rule for the algorithm is set to be at iteration
number K = 3. An evaluation of pdi-Boosting is shown as
the following results.

1) The recognition rate does not decrease even though the
number of data is extremely small. In addition, when the
number of the data is large, the recognition rate is high
and its variance is small.

2) The recognition rate in case of the learning data is high
even if the number of data is few.

3) When noise is large, the robustness of the recognition
rate is high.

As the first result, the recognition rate of pdi-Boosting was
higher than AdaBoost even though the number of data is
extremely less than ten. In addition, when the number of the
data is large, the recognition rate of pdi-Boosting was higher
than AdaBoost. As the second result, the recognition rate of
pdi-Boosting in case of the learning data was higher than
AdaBoost even if the number of data is few. As the third
result, the larger the noise, the higher the recognition rate of
pdi-Boosting compared with AdaBoost.

We must pay in particular attention to the third result. The
recognition rate of pdi-Boosting and AdaBoost is shown in
Fig. 3 when the standard deviation s for generating noise
was changed with 0.4, 0.8, and 1.0. In Fig. 3, the recognition
rate of pdi-Boosting is drawn in solid line, and AdaBoost is
drawn in dashed line. The cognitive rate is the mean value
of ten times of trials. The larger the noise, the lower the
recognition rate of pdi-Boosting and AdaBoost. The variance
of recognition rate is extremely large in the case of the number
of data less than 50. However, the recognition rate of pdi-
Boosting is higher than AdaBoost, when the number of data
is over 100. In addition, the recognition rate of pdi-Boosting
increases in proportion to the number of data. From these
results, pdi-Boosting has a robustness as to noise compared
with AdaBoost. As a result, we must notice that the recognition
rate of pdi-Boosting is higher than AdaBoost.

We discuss the recognition rate when the standard deviation
σ for generating probability distribution function f(Xj) was
changed. When we assume a position of misclassified data at
0.5, we show the frequency distribution of the interpolation
data in the figure 4. The larger the standard deviation σ, the
wider the domain of interpolation data. In the case of σ = 1.0,
around 80% of data are included in interval of [0, 1]. Therefore,
we notice that we must define larger standard deviation, when
more extensive interpolation data are necessary.

IV. ENHANCED PDI-BOOSTING

The interpolated data around the misclassified data were
put as a class same as misclassified data. However, the class

Fig. 3. Discriminant Rate by Changing Number of Data and S.D.

Fig. 4. Frequency Distribution of Interpolated Data

of interpolated data may not be necessarily put as the class
same as the misclassified data. Therefore we propose a new
class decision method to decide the class of interpolated data.
Assume that the interpolated data xint

j (d) is generated from the
misclassified data xF

j (d). Three evaluation criterions, which
are the evaluation of misclassified data E1, the evaluation of
classification classes E2, and the evaluation of neighborhood
classes E3, is defined, and the interpolated data xint

j (d) is put
as a class k∗.

(1) Evaluation of Misclassified Data

Evaluation Ej1 is defined by the probability distribution
function f(xj), and that represents the dependence of the
interpolated data to the misclassified data (See in Fig. 5). Eval-
uation Ej1 shows that the dependence of the interpolated data
to the misclassified data is high when Ej1 of the interpolated



data is large.

Ek
j1 =

{
P (xint

j (d)) xF
j ∈ k

1− P (xint
j (d)) xF

j /∈ k

P (xint
j (d)) =

∫ xint
j (d)

xF
j (d)

f(xj)dxj

Fig. 5. Evaluation E1

(2) Evaluation of Classification Classes

Evaluation Ej2 is defined by distance between the inter-
polated data and the center of each classification class (See
in Fig. 6). Evaluation Ej2 shows that the dependence of the
interpolated data to the classification class is high when Ej2

of the interpolated data is small.

Ek
j2 =

|xint
j (d)− xk

c | −mini|xk
i − xk

c |
maxi|xk

i − xk
c | −mini|xk

i − xk
c |
, for ∀i

where, xk
c is the center of the classification class k.

Fig. 6. Evaluation E2

(3) Evaluation of Neighborhood Classes

Evaluation Ej3 is defined by distance to data xN
j which is

the nearest to the interpolated data in each classification class
(See in Fig. 7). Evaluation Ej3 shows that the dependence of
the interpolated data to the neighborhood class is high when
Ej3 of the interpolated data is small.

Ek
j3 =

|xN
j − xint

j (d)| −mini|xk
i − xint

j (d)|
maxi|xk

i − xint
j (d)| −mini|xk

i − xint
j (d)|

for ∀i

The evaluation E1 is large when interpolated data is generated

Fig. 7. Evaluation E3

around the misclassified data, and the evaluation E2 is large
when interpolated data is generated around the center of the
identification class. On the other hand, the evaluation of the
class distribution around interpolated data is calculated in
evaluation E3.

Evaluation Ek
j is calculated by the weighted summation

of these three evaluation in each j attribute. The class of
interpolated data xint

j (d) is defined as k∗ where the total
evaluation Ek of n attributes is minimized.

k∗ = {k|min
k

Ek = min
k

n∑
j=1

Ek
j } (7)

Ek
j = w1E

k
j1 + w2E

k
j2 + w3E

k
j3 (8)

where, w1, w2, w3 is weight at each evaluation, respectively.
We formulate the algorithm of enhanced pdi-Boosting as

follows:

Step 1 The brain activity data D of size W is divided
to two data sets: the training data DTRD with
the size WTRD, and the checking data DCHD

with the size WCHD, where W = WTRD +
WCHD. In addition, the interpolated data from
D is denoted by DINT .



Step 2 The training data DTRD is given as input into
the i-th weak classifier Mi. The recognition rate
rTRD
i is calculated and the result given as Ri.

Step 3 The d-th misclassified data is selected from
DTRD. With this d-th data, a new interpolated
data xint

j (d) is generated around xF
j (d) of the

j-th attribute by the probability density function
f(xj) defined in equations (2) through (5).

Step 4 The class k∗ of the interpolated data xint
j (d) is

distinguished by equations (7) and (8). This new
data xint

j (d) is saved to DINT .
Step 5 Interpolated data are extracted from DINT until

the number of misclassified data are the same as
the number of correctly classified data, where the
number of interpolated data v satisfies.

Step 6 Let θ be the threshold value and K is the num-
ber of iterations. The algorithm terminates when
either one of the conditions K = i, rCHD

i ≥ θ
or i ≥ K is satisfied.

Step 7 We apply DCHD to M1, M2, · · · , Mi, · · · ,
MK to obtain the final discriminant result with
recognition rate rCHD

i .

V. EVALUATION OF ENHANCED PDI-BOOSTING

We simulate examples of signals as two-cluster problem
using numerical data to discuss the evaluation on enhanced
pdi-Boosting. We assume that brain activity signals of 490 are
normalized to lie in the range [0, 1] and [−1, 0], and the value
of the data corresponding to the steady state to be 0, and that to
the activation state to be 1 or -1. We add four types of noise to
the signals consisting of normally distributed random numbers
with standard deviation s. We choose the normal distribution
function to be the probability density function, and we adopted
REPtree as the weak classifier, which is a type of decision tree
method. The termination rule for the algorithm is set to be at
iteration number K = 3.

The four patterns are given in Fig. 8 to 11, respectively.

Weights: w1 = w2 = w3 = 1/3
Standard deviation σ = 0.0001
Standard deviation s = 0.2, 0.4, 0.6, 0.8

We compare enhanced pdi-Boosting with normal pdi-
Boosting, REPtree and other conventional Boosting algo-
rithms, and we discuss the recognition rates at the different
standard deviation. The comparison results are summarized
in Table I. We show that the average recognition rate is 10
times that of the disturbance data. In Table I, the recognition
rate of enhanced pdi-Boosting is shown to be slightly higher
than that of other methods with standard deviation s ranging
from 0.2 to 0.8. The comparison of enhanced pdi-Boosting
and normal pdi-Boosting, shows that the recognition rate
of enhanced pdi-Boosting is only 1.28% higher than that
of normal pdi-Boosting on average for all four patterns. In
addition, comparing enhanced pdi-Boosting with the other
methods, AdaBoost, MultiBoost and REPTree, the recognition
rate of enhanced pdi-Boosting is only 0.58% higher than
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Fig. 9. Data of s=0.4

that of AdaBoost, 1.05% higher than that of MultiBoost and
2.53% higher than that of REPTree on average for all four
patterns. Unfortunately, the recognition rate of enhanced pdi-
Boosting couldn’t show a significant difference as compared
with other boosting methods by the multiple comparison of
tukey method. However, the recognition rate of enhanced
pdi-Boosting shows a significant difference (p = 0.000037)
as compared with normal pdi-Boosting by the t-test with
significance level 0.01%. Looking at these results, enhanced
pdi-Boosting is more accurate than other boosting methods
even though the significance of enhanced pdi-Boosting is not
clear by a test.

At the stage K = 1 of the standard deviation s = 0.8,
the number of all data became 866. Since the number of
original data is 490, 376 as difference data are the interpolated
data. The interpolated data which changed the class by new
evaluation algorithm set off 67.0% of the total data. In those
data, the interpolation data which were changed from the
steady state ”zero” to the activation state ”one” were 73,
and the interpolated data changed the steady state with the
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activation state were 181. We should notice that the recognition
rate of pdi-Boosting is having improved by the change of
these classes more. Therefore, we conclude that the use of the
proposed pdi-Boosting algorithm is advantageous in practical
BCI applications.

TABLE I
COMPARISON OF ENHANCED PDI-BOOSTING WITH OTHER METHODS

Enh. pdi-B. Ada Multi REP
SD pdi-B. (Uniform) Boost Boost Tree

(%) (%) (%) (%) (%)
0.2 99.81 99.63 99.80 99.76 99.37
0.4 97.32 96.18 96.57 94.84 97.14
0.6 92.65 90.05 91.22 91.22 92.41
0.8 88.78 87.69 88.63 88.55 88.33

Ave. 94.64 93.38 94.06 93.59 92.11

VI. CONCLUSION

In this paper, we discussed our classification method based
on a boosting algorithm using a probabilistic data interpolation
scheme. In addition, we verified our method with numerical
examples, and discussed the effectiveness of our new approach
by comparing its performance to that of conventional boosting
algorithms. In future work, we plan to discuss how to optimize
the probability density functions used, and how to apply this
method to a range of practical BCI problems.

ACKNOWLEDGMENT

This work was supported in part by the Ministry of Educa-
tion, Culture, Sports, Science, and Technology of Japan under
Strategic Project to Support the Formation of Research Bases
at Private Universities 2008-2012, in addition the Organization
for Research and Development of Innovative Science and
Technology (ORDIST) of Kansai University.

REFERENCES

[1] Y.Freund: “Boosting a Weak Learning Algorithm by Majority,” Infor-
mation and Computation, Vol.121, No.2, pp.256-285 (1995).

[2] T.Nakashima, and Y.Shoji: “The Effect of Data Partition in Constructing
Fuzzy Ensemble Classifiers,” Proceedings of the 25th Fuzzy System
Symposium, No.3E2-01 (2009) (in Japanese).

[3] M.A.Lebedev, J.M.Carmera, J.E.O’Doherty, M.Zacksenhouse,
C.S.Henriquez, J.C.Principe, and M.A.L.Nicolelis, “Cortical ensemble
adaptation to represent velocity of an artificial actuator controlled by
a brain-machine interface,” Journal of Neuroscience, Vol.25, No.19,
pp.4681-4693 (2005).

[4] I.Hayashi, and S.Tsuruse: “A Proposal of Boosting Algorithm for
Brain-Computer Interface Using Probabilistic Data Interpolation,” IEICE
Technical Report, Neurocomputing, Vol.109, No.461, pp.303-308 (2010)
(in Japanese).

[5] I.Hayashi, and S.Tsuruse: “A Proposal of Boosting Algorithm by Prob-
abilistic Data Interpolation for Brain-Computer Interface,” Proceedings
of the 26th Fuzzy System Symposium, pp.288-291 (2010) (in Japanese).

[6] I.Hayashi, S.Tsuruse, J.Suzuki, and R.T.Kozma: “A Proposal for Apply-
ing pdi-Boosting to Brain-Computer Interfaces,” Proceedings of 2012
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE2012) in
2012 IEEE World Congress on Computational Intelligence (WCCI2012),
pp.635-640 (2012).

[7] I.Hayashi, and S.Tsuruse: “An Evaluation of pdi-Boosting for Brain-
Computer Interfaces,” Proceedings of the 6th International Conference
on Soft Computing and Intelligent Systems and the 13th International
Symposium on Advanced Intelligent Systems (SCIS-ISIS2012), pp.1215-
1220 (2012).

[8] M.Wolf, G.Morren, D.Haensse, T.Karen, U.Wolf, J.C.Fauchere, and
H.U.Bucher: “Near Infrared Spectroscopy to Study the Brain: An
Overview,” Opto-Electronics Review, Vol.16, No.4, pp.413-419 (2008).

[9] R.Sitaram, H.Zhang, C.Guan, M.Thulasidas, Y.Hoshi, A.Ishikawa,
K.Shimizu, and N.Birbaumer: “Temporal Classification of Multichannel
Near-Infrared Spectroscopy Signals of Motor Imagery for Developing
a Brain-Computer Interface,” Neuroimage, Vol.34, No.4, pp.1416-1427
(2007).

[10] W.Niide, T.Tsubone, and Y.Wada: “Discrimination of moving limb with
near-infrared spectroscopy,” IEICE Technical Report, Neurocomputing,
Vol.107, No.542, pp.191-196 (2008) (in Japanese).

[11] T.Yamaguchi, K.Nagata, Q.T.Pham, G.Pfurtscheller, and K.Inoue: “Pat-
tern Recognition of EEG Signal during Motor Imagery by Using
SOM,” International Journal of Innovative Computing, Information and
Control, Vol.4, No.10, pp.2617-2630 (2008)

[12] Y.Freund, and R.E.Schapire: “A Decision-Theoretic Generalization of
On-Line Learning and an Application to Boosting,” Journal of Computer
and System Sciences, Vol.55, No.1, pp.119-139 (1997).

[13] R.E.Schapire: “The Boosting Approach to Machine Learning: An
Overview,” In D.D.Denison, M.H.Hansen, C.Holmes, B.Mallick, and
B.Yu, editors: Nonlinear Estimation and Classification, Springer (2003).


