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Abstract—Brain-computer interface (BCI) and brain-machine
interface (BMI) technologies have recently entered the research
limelight. In many such systems, external computers and ma-
chines are controlled by brain activity signals measured us-
ing near-infrared spectroscopy (NIRS) or electroencephalograph
(EEG) devices. In this paper, we propose a novel boosting algo-
rithm for BCI using a probabilistic data interpolation scheme. In
our model, interpolated data is generated around classification
errors using a probability distribution function, as opposed to
conventional AdaBoost which increases weights corresponding
to the misclassified examples. By using the interpolated data, the
discriminated boundary is shown to control the external machine
effectively. We verify our boosting method with an experiment in
which NIRS data is obtained from subjects performing a basic
arithmetic task, and discuss the results.

I. INTRODUCTION

Recently, many papers related to research on brain-computer
interfaces (BClIs) have been published in the literature [1], [2].
In the BClIs, brain activity signals are measured using near
infra-red spectroscopy (NIRS) [3]-[5] and electroencephalo-
graphic (EEG) devices [6]. Then the discriminant model is
used to extract the signals discriminated boundaries in order
to control an external computer. However, large amounts of
data are required to identify the discriminated boundary. In
addition, the external computer is unable to follow dynamic
changes as the identified model uses prior brain activity data.
In a different approach, ensemble learning models [7]-[9] are
applied to the pattern classification problems. The ensemble
learning model consists of multiple weak classifiers, and the
final output is determined by the result of a majority rule
decision between the weak classifiers, done to improve overall
discriminant accuracy. AdaBoost [10]-[12] is a remarkable
boosting method among ensemble learning models; it assigns
high weights to the misclassified data and thus labels data so
that the next iteration of the classifier model and focus on the
misclassified data.

In this paper, we propose a new boosting algorithm for BCI,
which interpolates data around misclassified data using a given
probability density function. We call our method pdi-Boosting
(Probabilistic Data Interpolation-Boosting) [13]-[15]. In other
words, misclassified data for the classifier model is not labeled
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by weights as in AdaBoost. Instead, the discriminant model
is characterized by the addition to the existing data of new
data generated around the misclassified data using the given
probability density function. Therefore, as pdi-Boosting gen-
erates interpolated data around the misclassified data, we can
overcome the classical BCI problem of decreasing reliability
in the discriminant model resulting from the decrease in the
number of overall data. In addition, we can obtain a dis-
criminant boundary with inherent robustness, and the external
computer is able follow dynamic changes in the environment.
First, we formulate the pdi-Boosting algorithm and discuss the
characteristics of pdi-Boosting by a simple numerical example
where we add various amounts of disturbances. Second, we
apply our novel method to an experiment in which brain
activity is measured using a NIRS device to demonstrate the
effectiveness of pdi-Boosting.

II. FORMULATION OF PDI-BOOSTING

The boosting algorithm is an ensemble learning model,
which as its final output gives the result obtained by a majority
rule decision using the output of multiple weak classifiers. Ad-
aBoost [10] is an outstanding boosting method, a conceptual
diagram of AdaBoost is shown in Figure 1. In each iteration
we select training data (I'RD) from the set of misclassified
data with high weights of over 50%, and then apply this
data to a weak classifier in the consecutive iteration. After
identifications are made by the weak classifier, the weights of
the data are updated. After iterating the procedure sequentially,
the final output is determined by majority rule decision of the
multiple weak classifiers My, Ma,--- , M;,--- , M, when the
checking data (CH D) is given to these models.

In the pdi-Boosting algorithm, new data is interpolated
around the misclassified data using a probability density
function instead of the updating of the weights as in AdaBoost.
A conceptual diagram of pdi-Boosting is shown in Figure 2;
the algorithm is as follows. Similar to AdaBoost, the final
output is determined by a rule of majority decision using the
multiple weak classifiers, when the checking data (CHD)
is given to these models. However, the difference between
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Fig. 2. Conceptual Diagram of pdi-Boosting

AdaBoost and pdi-Boosting is that the amount of data in pdi-
Boosting increases as compared to AdaBoost.

Assume that the misclassified data is given as the s-th data
in TRD, and the j-th attribute of the s-th data is denoted
by z;(s). The interpolated data x7““(s) is generated by a
probability density function f(z;) around the misclassified
data z;(s) with mean value as shown in Figure 3.

e (s) = {z; € A | P(A /f 5)dey ()

In general we choose the normal distribution function to be
our probability density function f(z;), but we may also adopt
a uniform distribution as follows:
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where xy““ and x}m'" are defined as

z}nzn — l‘] (S) +417] (S ) (3)
3z i 1
x;nam — x] (S) +4J,'] (S + ) (4)

and z;(s — 1) and z;(s + 1) denote the (s — 1)-th and the
(s + 1)-th data, respectively.
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Fig. 3. Selection of Misclassified Data by Data Interpolation

We formulate the algorithm of pdi-Boosting as follows:

Step 1 Brain activity D of size W is measured at each

electrode of the NIRS measurement device. The data
D is divided to two data sets: the training data DT RP
with the size WP and the checking data DCH P
with the size WEHD  where W = WTED L jyCHD,
In addition, the interpolated data from D is denoted
by DI N T.

Step 2 The training data DT is given as input into the

i-th weak classifier M;. The recognition rate 7 *P
is calculated and the result given as R;.

Step 3 The s-th misclassified data is selected from DT RP.

With this s-th data, a new interpolated data 7 (s)
is generated around x;(s) of the j-th attrlbute by
the probability density function f(x;) defined in
equations (2) through (4), and this new data x7°(s)
is saved to DINT,

Step 4 Interpolated data are extracted from D!NT until

the number of misclassified data are the same as
the number of correctly classified data, where the
number of interpolated data d satisfies

d> g — WTRD (1 — TRDY, (3)

Step 5 Let 6 be the threshold value and M is the number of

iterations. The algorithm terminates when either one
of the conditions r#P > 6 or i > M is satisfied.



Step 6 We apply D to My, M, ---, M; to obtain the
final discriminant result with recognition rate r¢# 7.

%

Because new data is added around the misclassified data
using a probability density function, and in each successive
iteration the weak classifier fits the misclassified data closer
than in the previous iteration, the final result will more closely
approximate the given data.

III. ROBUSTNESS OF PDI-BOOSTING

When brain activity is measured using NIRS or EEG devices
the observed data includes significant amounts of noise. To
study the effect noisy NIRS data has on pdi-Boosting, we
simulate examples of possible cases of noisy signals using
numerical data. We give the parameters of the noise distur-
bances which we will add to the signal, and then discuss the
robustness of pdi-Boosting with respect to the parameters of
the noise added to the data.

We assume that oxyhemoglobin (oxy-Hb) and deoxyhe-
moglobin (doxy-Hb) data are normalized to lie in the range
[0,1]. We add four types of noise to the signals consisting of
normally distributed random numbers with mean value m and
standard deviation s as follows:

(A) Data generated with m =0 and s = 0.2
(B) Data generated with m = 0 and s = 0.4
(C) Data generated with m = 0 and s = 0.6
(D) Data generated with m =0 and s = 0.8

where the number of clusters is 2. We assume the value
corresponding to the steady state to be 0, and that to the
activation state to be +1.
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Fig. 4. Data Pattern A

The four patterns are given in Figures 4 through 7. The
observed data is chosen to lie in a 50s time interval, where the
task begins 10s after the start of measurement, and the duration
of the task is 10s. The active state is easily distinguished from
the steady state in Figure 4, but it becomes very difficult to
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Fig. 5. Data Pattern B
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Fig. 6. Data Pattern C

differentiate between the active and steady states in Figures 5
through 7 because of the substantial noisy disturbance rates.

The results of pdi-Boosting are given in Table I. We show
that the average recognition rate is 10 times that of the
disturbance data. In addition, we adopted REPtree as the
weak classifier, which is a type of decision tree method. The
termination rule for the algorithm is set to be at iteration
number M = 3. In Table I, the recognition rate of pdi-
Boosting is shown to be slightly higher than that of other
methods with standard deviation s ranging from 0.2 to 0.6. On
the other hand, the recognition rate of pdi-Boosting is clearly
higher than other methods when the standard deviation is 0.8.
Additionally, the difference in the recognition rate between
pdi-Boosting and REPtree was about 10%. Looking at these
results, it is clear that pdi-Boosting is more accurate than other
methods. As a result, we have shown the higher robustness
of pdi-Boosting for noisy data as compared to conventional
Boosting methods and REPtree.

IV. NIRS SIGNAL MEASUREMENT EXPERIMENT OF
CALCULATION TASK

As an application of pdi-Boosting to NIRS measurement
tasks, we performed the following experiment. We assigned
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TABLE I
ACCURACY RATES FOR DATA PATTERNS WITH ADDED NOISE

pdi-B. | AdaBoost | MultiBoost | REPtree
Data (%) (%) (%) (%)
Pattern A 99.82 99.80 99.76 99.37
Pattern B 97.33 96.57 94.84 97.14
Pattern C 92.65 91.22 91.22 9241
Pattern D 88.78 88.63 88.55 79.54
Ave. 94.65 94.06 93.59 92.11

subjects the task of performing a simple arithmetic calculation,
and measured brain activity during the task using a NIRS
device. We used the 2ch NIRS device (YN-502, Excel of
Mechatronics Company, Tokyo, Japan). This device is able to
measure the oxyhemoglobin (oxy-Hb) and deoxyhemoglobin
(doxy-Hb) at two electrodes with the wavelength 770nm and
840nm with period 0.098s. Our brain signal data sets consist
of the above four attributes measurable by our NIRS device.

We gave a simple test consisting of arithmetic addition
problems to our subjects as the experimental task. The test
consisted of a simple addition problem that does not require
carrying of decimals, similar to elementary school first grade
level problems. Figure 8 shows the environment of experiment.
We confirmed the ability of three subjects to perform the
task, which is the subject’s age, sex, dominant arm, health
condition, and their ability to perform specific calculations
before experiment.

The experiment consisted of 5 trials that we called a set,
and was 250 seconds in total. A trial is 50 seconds which
consists of a 10 second pre-rest, a 10 second interval allotted
for our simple arithmetic calculation test and 30 seconds of
a post-task resting. We show the experiment protocol of the
arithmetic calculation test in Figure 9.

To serve as our three subjects, we selected one man and
two women, and performed 12 sets of trials with each subject
extended over a period of several days. In the trials, we
placed the two electrodes of the NIRS device on prefrontal

Fig. 8.

Experiment

areas I}, and [}y as described in the ten-twenty electrode
system of the American Electroencephalographic Society. The
discrete-valued data sets D of brain signals were created from
a randomly selected 10 trials by each of the three subjects.

Beep Beep Beep Beep
l L ! !

| 10sec | 10sec | 30sec I

Start Rest End or Return

(Ahead task)

Task Rest

(After task)

Fig. 9. Timing Protocol of Experiment

V. RESULTS AND DISCUSSION

In Figures 10 and 11 we show the change in cerebral blood
flow of subject C', which is the brain activity signal measured
by NIRS equipment. Figure 10 shows the change in flow of
oxy-Hb and doxy-Hb measured at the right side electrode, and
Figure 11 shows it that of the left side electrode. In Figure 11,
we see that when the task is started at 10s, the flow of oxy-Hb
increases, and the flow of doxy-Hb decreases. After the task
finishes at 20s, both cerebral blood flow rates gradually return
to the normal steady state.

Next, we explain the model for cerebral blood flow changes
using the pdi-Boosting algorithm. We use REPtree as our weak
classifier, and set our termination rule to be the number of
iterations M = 3. We set the size of data set D to be W = 490
because the period of the data captured by the NIRS device is
0.098s and one trial has a duration of 50s. However, we also
set W = WTED = WwOHD — 490 and D = DTRP = pCHD
as we did not have ample data in this experiment.

First, we fed the data set D?RD into the first weak classifier
M, and obtained the recognition rate r{ BP = r{HD —
91.22% as result R;. The number of misclassified data in
Ry is 43, and the candidate interpolation data z7°"(s) is
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Fig. 11. Cerebral Blood Flow Change of Left Side Electrode

generated around the misclassified data using Equations (2)
through (4). These candidate interpolation data are added to
the data set D/NT. The interpolated data d; is randomly
selected from D/NT and applied to the next weak classifier,
until the number of the interpolated data becomes equal to the
number of correctly identified data. The number of data points
in DIEP js WIED — 894 because the number of interpolated
data in d; is 404.

In the next step, we input DI into the second weak
classifier My and obtain the recognition rate r$'P = 92.24%
as result Ry. At the second step, the number of the interpolated
data dy was 414 and the number of the data sets DI P for the
third weak classifier M3 was W4 P = 904. The recognition
rate of Mz is r§HP = 93.67%, and the algorithm stops
running finished by the termination rule for M = 3.

From the three results Ry, Ro, and R3 the majority rule
yields a final result of 95.31% for the recognition rate. The
number of interpolated data points as well as the recognition
rates are summarized in Table II.

TABLE II
ACCURACY RATES AND NUMBER OF INTERPOLATION DATA

Accuracy Inter. Data
Model Rate(%) | (for next step) | TRD | CHD
My 91.22 404 490 490
Mo 92.24 414 894 490
M3 93.67 428 904 490
pdi-B.
(TRD) 9531

Next, we discuss the recognition rates for the three indi-
vidual subjects. We show that the average recognition rate
for each step in Table IIl. In the case of subject B, the
recognition rate in the three consecutive steps are respectively
93.69%, 93.47%, and 93.33%. However, the total recognition
rate determined by the majority rule is 94.78%, higher by a full
1.0% than the recognition rates in the individual three steps.
This phenomena is apparent in case of the other two subjects
as well. The results are remarkable as the higher recognition
rates in the total recognition rate show the effectiveness of
pdi-Boosting.

TABLE III
ACCURACY RATE FOR INDIVIDUAL SUBJECTS

Sub. [ 7$HP (%) [ v$HP (%) | v§HP (%) | TR(%)
A 90.33 90.29 90.51 91.04
B 93.69 93.47 93.33 94.78
C 92.13 88.37 88.01 94.16

Ave. 92.13 91.62 92.06 93.10

Finally, we compare pdi-Boosting with REPtree and other
conventional Boosting algorithms. The comparison results are
summarized in Table IV. The comparison of pdi-Boosting and
REPtree, shows that the recognition rate of pdi-Boosting is
only 0.97% higher than than that of REPTree on average for all
three subjects. In addition, the recognition rate of pdi-Boosting
shows a significant difference (p = 0.01616) as compared with
REPTree by the t-test with significance level 0.05%.

On the other hand, comparing pdi-Boosting with the other
boosting methods, AdaBoost and MultiBoost, the recognition
rate of pdi-Boosting is only 0.3% higher than that of Ad-
aBoost, and 1.7% higher than that of MultiBoost in subject
A. In subject C, the recognition rate of pdi-Boosting is only
1.2% higher than MultiBoost, but the recognition rate became
lower by a small 0.33% than for AdaBoost. In comparing
the three subjects, the recognition rate of pdi-Boosting shows
a significant difference (p = 0.0006860) compared with
MultiBoost by the t-test with significance level 0.05%. The
recognition rate of pdi-Boosting is only 0.56% higher than
AdaBoost, but we could not show a significant difference
(p = 0.1578) as compared to AdaBoost by the t-test with
significance level 0.05%.
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TABLE IV
COMPARISON OF THE PROPOSED AND EXISTING MODELS

pdi-B. | AdaBoost | MultiBoost | REPtree
Sub. (%) (%) (%) (%)
A 91.04 90.33 90.38 90.33
B 94.78 94.24 93.57 93.69
C 94.16 94.39 92.96 92.92
Ave. 93.10 92.54 92.14 92.13

As a result, we may conclude that recognition rates using
pdi-Boosting are higher than those of other Boosting methods.
Therefore, the use of the proposed pdi-Boosting algorithm is
advantageous in practical BCI applications.

VI. CONCLUSION

In this paper, we formulated a novel classification method
based on a boosting algorithm using a probabilistic data
interpolation scheme. In addition, we verified our method in an
experiment in which brain activity is measured using a NIRS
device, and discussed the effectiveness of our new approach
by comparing its performance to that of conventional boosting
algorithms. In future work, we plan to discuss how to optimize
the probability density functions used, and how to apply this
method to a range of practical BCI problems.
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