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Abstract— Brain-computer-interface has been come into the
research limelight. Network dynamics of neurons strongly
effects to a control of computer or machine in the outer
world. Dissociated culture system with multi-electrode array
is useful for elucidation of network dynamics of neurons. We
have been investigating action potentials of rat hippocampal
neurons cultured on the dish connecting with the outer robot.
However, we don’t exactly comprehend logicality of living
neuronal networks. In this paper, we identify logicality of living
neuronal networks with three electrodes in mult-electrode array
using fuzzy connective operators consisting of t − norm and
t− conorm operators, and we introduce a straight running of
fuzzy bio-robot. We concluded that the logicality of living neu-
ronal networks is dynamically changed to weak OR connection
from strong AND connection. Additionally, by applying the
fuzzy bio-robot to a straight running, we analyzed plasticity
of living neuronal network connected to the robot, and we
discussed regularity of logical potential response of the neuronal
networks.

I. INTRODUCTION

Recently, Brain-computer-interface, shortly BCI, has been
come into the research limelight [1], [2]. As a fundamental
study of BCI, potential response and dynamics of living
neuronal networks have been discussed, e.g., in hippocampal
neurons [3]. Dissociated culture system with multi-electrode
array is fully useful for elucidation of network dynamics of
neurons [4]. Kudoh et al. [5] have been investigating action
potentials of rat hippocampal neurons cultured on the dish
with multi-electrode array. Bettencourt et al. [6] identify a
relationship between the three electrodes in the dissociated
culture system with information entropy. However, they don’t
discuss logicality of living neuronal networks enough. We
don’t also exactly comprehend logicality of living neuronal
networks in multi-electrodes array connected with the outer
world.

In this paper, we formulate a new algorithm to acquire
logical relationship between three electrodes with fuzzy con-
nective operators, and identify the relationship by adjusting
parameters of t-norm and t-conorm operators [7]. We addi-
tionally introduce an example of straight running of fuzzy
bio-robot, and discuss plasticity of living neuronal network
[8]–[12]. We define here fuzzy operator with Schweizer’s
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t− norm and t− conorm operators [13], which represents
logical operator, algebraic operator, bounded operator, drastic
operator and so on. With the Schweizer’s t − norm and
t − conorm operators, we formulate a new algorithm to
acquire logicality of electrodes in rat hippocampal neurons
cultured on the dish.

Additionally, we introduce the fuzzy bio-robot system in
an example of straight running [14], [15]. We use a Khepera
II robot as outer machine connecting with living neuronal
networks. We succeeded in straight running with fuzzy logic
[16]. Through the example, we discussed plasticity of living
neuronal networks by analyzing the membership values in the
antecedent part of fuzzy rules. Especially, we could associate
a spatial pattern of action potentials in multi-electrodes with
a particular phenomenon in the outer robot. We concluded
that regularity of neuronal responses can control the outer
robot logically.

II. NEURON CULTURE AND MULTI-ELECTRODE ARRAY

The conduct of all experimental procedures was governed
by The Animal Welfare, Care and Use Committee in AIST.
The hippocampus neurons were prepared from a Wister rat
on embryonic day 17-18 (E17-18) and cultured by the previ-
ously described method [5]. Briefly, neurons were dissociated
by treatment with 0.175% trypsin (Gibco, U.S.A.) and cul-
tured by plating 500,000 cells in a 7mm diameter-glass ring
on poly-D-lysine coated MED probe (Alpha MED Sciences,
Japan), which has 64 planar placed microelectrodes. The
medium is based on D-MEM/F12, supplemented with 5%
horse serum (Gibco, U.S.A.) and 5% fetal calf serum (Gibco,
U.S.A.).

The field action potentials were recorded 10-100days after
the start of the culture. The spontaneous action potentials
(sAPs) were gathered with the MED64 system (Alpha MED
Sciences, Japan) [4] at a 10-20 kHz sampling rate. Evoked
field action potentials (eAPs) at 62 sites in the cultured
networks were recorded with the MED64 system at a 20
kHz sampling rate. All experiments were carried out at room
temperature (20 − 25◦). The recorded spikes were detected
by our developing program, sorted and classified by the
amplitude versus decay time distributions using k-means
cluster cutting method and converted to event trains.

III. FUZZY CONNECTIVE OPERATORS

The fuzzy connective operators consists of t − norm
and t − conorm operators. t − norm T is a projective
function expressed by T (x, y) : [0, 1] × [0, 1] → [0, 1],
which satisfies four conditions, id est, boundary conditions,
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monotonicity, commutativity and associativity. t − norm
operator includes logical product, algebraic product, bounded
product and drastic product. t − conorm operator S is
dual function of t − norm operator, which is expressed by
S(x, y) : [0, 1] × [0, 1] → [0, 1], and also includes logical
sum, algebraic sum, bounded sum and drastic sum.

On the other hand, many parametric t − norm and t −
conorm operators have been proposed. By changing the
values of parameter, the parametric fuzzy operator become
equal to the drastic t − norm to the drastic t − conorm.
For example, the parametric fuzzy operator proposed by
Schweizer [13] is expressed as follows:

T (x, y) = 1− ((1− x)pn + (1− y)pn

−(1− x)pn(1− y)pn)1/pn (1)

S(x, y) = (xpc + ypc − xpcypc)1/pc (2)

where, pn and pc are parameters.
By changing values of the parameter pn and pc, the

Schweizer t−norm and t−conorm become equal to logical
operator (p = ∞), algebraic operator (p = 1) and drastic
operator (p = 0).

Fig. 1. Algorithm for Analysis of Action Potentials in Cultured Neuronal
Network

IV. ACQUISITION OF LOGICALITY IN NEURONAL

NETWORKS

For acquiring logicality of neuronal networks, we detected
action potentials of rat hippocampal neurons with multi-
electrode array. The potentials data are provided as pulse-
time series for 120s with 20Hz at 64 electrodes. We selected
an arbitrary set of three electrodes x, y, z, and acquired
the coherence pattern between the three electrodes. Now,
we divide the data of pulse-time series in several time-
windows, and set delay deviation between time-windows of
input electrode and output electrode. The proposed algorithm
is shown in Figure 1. In the electrode z as output elctrode,
we define the pulse frequency, F z

i , in the i-th time-window

Fig. 2. Experiments

by the following membership function with center az
i and

width cz
i .

az
i =

pz
i − spz

lpz − spz
(3)

cz
i = |az

i − E(az
i )| (4)

where, pz
i is the number of pulse in the i-th time-window,

spz and lpz are the minimum and maximum number of pz
i ,

respectively. E(az
i ) is the average value of az

i .
The membership function F x

i−sx
with the delay deviation

sx is also defined in the electrode x as the input elctrode as
same as the electrode z. Our purpose is here to let the degree
of coincidence between F z

i and F x
i−sx

maximize on the time
x, where we denote the maximum degree of coincidence as
µ∗xz . To let the degree of coincidence maximize, the width
of time-window wx and the delay deviation sx are adjusted.
We denote the optimum pair of the width of time-window
and the delay deviation by Opt(w∗

x, s∗x).

µxz = sup
t

µF z
i
(t) ∧ µF z

i−sx
(t) (5)

Opt(w∗
x, s∗x) = max

wx,sx

µxz. (6)

We also optimize the pair of Opt(w∗
y, s∗y) in the electrode

y and the electrode z.
Lastly, we calculate the output of the Schweizer operator

with two inputs of the center ax
i−sx

and the center ay
i−sy

of
membership function in the electrode x and y, respectively.

T (x, y) = 1− ((1− ax
i−sx

)pn + (1− ay
i−sy

)pn

−(1− ax
i−sx

)pn(1− ay
i−sy

)pn)1/pn (7)

S(x, y) = ((ax
i−sx

)pc + (ay
i−sy

)pc

−(ax
i−sx

)pc(ay
i−sy

)pc)1/pc . (8)

We then adjust the parameter pn of t−norm and param-
eter pc of t− conorm to minimize a deviation between the
center az

i in the electrode z and Schweizer output, and select
the optimum parameter p∗ from either pn or pc to minimize
the deviation.

p∗ = {pn, pc| min
pn,pc

(|T (x, y)− az
i |, |S(x, y)− az

i |)}. (9)
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Fig. 3. Analysis of Action Potentials

For tangible data analysis, we selected three sets of input
electrodes from 63 electrodes because of the output in the
60th electrode (60el). Figure 2 shows the location of three
combinations of the input and output electrodes. In 60el,
we detected the sudden increasing of pulse frequency at
102.4s after the pulse frequency drastically decreased to 6
times at the around 95s. For the analysis, we focus this
characteristic pulse increasing at 102.4s, and analyzed how
this characteristic pulse influenced it for the following three
combinations.

1. A combination of (x, y, z) = (51el, 59el, 60el)
2. A combination of (x, y, z) = (43el, 50el, 60el)
3. A combination of (x, y, z) = (35el, 42el, 60el)
The result is shown in Figure 3. We showed the degree

of coincidence between membership functions µ∗xz and µ∗yz ,
and the optimum parameter values of fuzzy operators p∗,
pn and pc. In the first combination of electrodes (x, y, z) =
(51el, 59el, 60el), the maximum degrees of coincidence are
adjusted as µ∗xz = 0.85, µ∗yz = 0.75 with wx = 11s, wy =
10s, and the optimum parameter of Schweizer operator is
converged to p∗ = pc = 730.5. In the second combination

of electrodes (x, y, z) = (43el, 50el, 60el), the maximum
degrees of coincidence are adjusted µ∗xz = 1.0, µ∗yz = 1.0
with wx = 11s, wy = 10s, and the optimum parameter of
Schweizer operator is converged to p∗ = pc = 617.98. In the
third combination of electrodes (x, y, z) = (35el, 42el, 60el),
the maximum degrees of coincidence are adjusted as µ∗xz =
0.76, µ∗yz = 0.91 with wx = 11s, wy = 10s, and the
optimum parameter of Schweizer operator is converged to
p∗ = pc = 630.23. From these results, we conclude that the
characteristic pulse increasing in 60el at 102.4s propagates
to (51el, 59el) → (43el, 50el) → (35el, 42el). And then,
the parameters of Schweizer operator have been converged
to p∗ = pc = 730.5 in (51el, 59el), p∗ = pc = 617.98 in
(43el, 50el), and p∗ = pc = 630.23 in (35el, 42el). These
parameters mean logical sum. However, we should notice
that the parameter of Schweizer operator at around 102.4s is
p∗ = pn = 0.0, which means the drastic product. Therefore,
despite all of our intuition, we conclude that the logicality of
electrodes became to drastically change to weak OR relation
from strong AND relation when a crowd of the pulses was
fired and the pulse propagated distantly and widely.
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Fig. 4. Living Neuronal Network and Robot

V. FUZZY BIO-ROBOT SYSTEM

Fuzzy bio-robot includes two kinds of fuzzy logic units,
that is FLTD and FLBU. The FLTD, Fuzzy Logic unit in
Top Down, is located in top-down processing, and infers
the rotation speed of robot actuator from the pattern of
action potential in multi-electrode array. The FLBU, Fuzzy
Logic unit in Bottom Up, is located in bottom-up processing,
and infers the electrical stimulation points in multi-electrode
array from output values of robot sensors. Figure 4 explains
the relationship between living neuronal networks and robot,
and Figure 5 shows the concept of fuzzy bio-robot system.

Fig. 5. Fuzzy Bio-Robot System

Figure 6 shows how to control a robot with living neuronal
networks via fuzzy logic. We designed closed loop in which
the robot of Khepera II receives the rotation speed of actuator
in [-20, 20] from FLTD for eight inputs of patterns in
multi-electrode array. Additionally, the multi-electrode unit
receives stimulation points from FLBU for eight IR sensors
of the robot. We designed 256 fuzzy rules with eight inputs
and two output in FLBU and FLTD, respectively.

Now, we explain how to design fuzzy rules in FLTD.
First, we divide 64 electrodes in eight parts as inputs for
FLTD, and define two kinds of membership functions of

Fig. 6. Robot Control with Living Neuronal Network

”High” and ”Low” potentials in each part of electrodes. Thus,
we become to constitute 256 fuzzy rules. Two electrodes
are arbitrarily seleceted as stimulus points, and we detect
the potential response for the first stimulus from other 62
electrodes. The pulse pattern of potential responses is input
to the antecedent part of fuzzy rules, and the membership
value of each rule is calculated. Next, we detect the pulse
pattern of potential responses for the second stimulus, and
also calculate the membership value of each rules. For two
different membership values, we calculate the subtraction
between them and assign motor speed of robot actuators to
rules whose differentials are large. We additionally adjust the
value of motor speed better with the steepest descent method.
If the neuronal networks have regularity of logical potential
response, the robot will be controlled well.

To demonstrate the regularity of neuronal networks, we
applied the fuzzy bio-robot system to the straight running.
We estimate if the Khepera robot can run straight in a track
without bumping into a wall. The running track is the length
of 120mm and the width of 90mm. Figure 7 shows the
running track.
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Fig. 7. Experimental Course

Fig. 8. Learning of Fuzzy Rule

The deviation between the output of FLTD and target
output is shown in the part A of Figure 8. The variance
of each 10 times of learning is shown in the part B. The
deviation is gradually decreasing according to the number of
learning. Actually, the deviation of the left actuator, Lspeed,
decreased by 40.3% for 50 learning times and become 1.673.
The deviation of the right actuator, Rspeed, decreased by
27.8% and become 1.224.

Next, we show the motor speed, the subtraction Lspeed −
Rspeed and Rspeed − Lspeed of each fuzzy rule in Figure 9.
We should notice that the control values to turn on the right
are assigned to the consequent part of the higher number of
fuzzy rules because of the large deviation of Lspeed−Rspeed.
The control values to turn on the left should be also assigned
to the consequent part of the lower number of fuzzy rules
because of the large deviation of Rspeed − Lspeed.

We next monitored the membership value of fuzzy rules
fired while the robot is running in a track under condition
of 1mM density of Mg+

2 . Figure 10 shows a trajectory
of the robot running and the membership values in FLTD.
The part A shows the changing of sensor value detected
with Khepeara. The part B shows the membership values
in FLTD. We also figured the changing of membership value
under condition of 5mM density of Mg+

2 for comparison of
1mM density. The Khepera II robot could run in a straight
without bumping on the wall. In the part A, we monitored

Fig. 9. Consequent Motor Speed of Fuzzy Rule

two high frequency pulses of “Input 4” for “L Stimulus”, and
“Input3” for “R Stimulus”. In the part B, we detected the high
membership value in the 256th fuzzy rule whose membership
functions are all “Low” potentials. That is, the Khepera
robot is usually running in a straight with spontaneous action
potentials with the 256th fuzzy rule, however the specific
fuzzy rules to avoid collision with wall are fired when the
Khepera was too close to wall.

To discuss the fuzzy rules to avoid collision with wall
in more detail, we monitored fuzzy rules whose membership
values are relatively higher until 40s in Figure 11. In the part
A, the Khepera robot detects the wall in the left side, and
turns on the right with the 13th and 14th fuzzy rules, or the
15th and 16th fuzzy rules, simultaneously. The specificity of
these fuzzy rules pattern appears regularly. In other words,
the neuronal networks have regularity of logical potential
response.

Finally, we observed the trajectory of the Khepera with
camera placed above of the track course. We image a base
line drawning along the centerline of the track course from
the start position of the Khepera. We detected the deviation
between the base line and the trajectory of the Khepera, and
defined absolute value of the deviation as evaluation value.
Figure 12 shows a change of the evaluation for running trials
of iteration. The evaluation values decrease as running trials
of iteration, and the Khepera became to run along the base
line. We conclude that the decreasing will be due mainly to
plasticity of neuronal networks.

In addition, we calculated the rate of the Khepera com-
pleted the course in 20 trials in Table I. The completed
courses were 16 times, and the case of the Khepera crashed
on the wall and stopped were four times. However, the rate
of completed the course is high with 80%. We conclude that
the logicality of neuronal networks and the adaptability of
the fuzzy logic work efficiently. We should also conclude that
the rate 80% is extremely high because of living neuronal
networks.
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Fig. 10. Trace of Khepera Robot and Membership Values of FLTD

Fig. 11. Membership Values of FLTD until 40s

Fig. 12. Trace Deviation of Khepera Robot

TABLE I

COMPLETED RUN RATE OF KHEPERA ROBOT

Experiment Number Rate
Completed Run 1,3,4,5,6,7,8,9,10,14

15,16,17,18,19,20 80.0%
Incompleted Run 2,11,12,13 20.0%

VI. CONCLUSION

In this paper, we formulated a new algorithm to acquire
logical relationship between three electrodes with fuzzy
connective operators. We also introduced an example of
straight running of fuzzy bio-robot, and discussed plasticity
of living neuronal network connected to the robot. We should
discuss the relationship between plasticity of living neuronal
networks and adaptability of fuzzy logic more deeply in the
near future.
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