Acquisition of Logicality in Living Neuronal Networks
and its Operation to Fuzzy Bio-Robot System

Isao Hayashi, Member, IEEE, Megumi Kiyotoki, Ai Kiyohara, Member, IEEE,
Minori Tokuda, and Suguru N. Kudoh, Member, IEEE

Abstract—Brain-computer-interface has been come into the research limelight. Network dynamics of neurons strongly affects to a control of computer or machine in the outer world. Dissociated culture system with multi-electrode array is useful for elucidation of network dynamics of neurons. We have been investigating action potentials of rat hippocampal neurons cultured on the dish connecting with the outer robot. However, we don’t exactly comprehend logicality of living neuronal networks in this paper. We identify logicality of living neuronal networks with three electrodes in multi-electrode array using fuzzy connective operators consisting of $t-norm$ and $t-conorm$ operators, and we introduce a straight running of fuzzy bio-robot. We concluded that the logicality of living neuronal networks is dynamically changed to weak OR connection from strong AND connection. Additionally, by applying the fuzzy bio-robot to a straight running, we analyzed plasticity of living neuronal network connected to the robot, and we discussed regularity of logical potential response of the neuronal networks.

I. INTRODUCTION

Recently, Brain-computer-interface, shortly BCI, has been come into the research limelight [1], [2]. As a fundamental study of BCI, potential response and dynamics of living neuronal networks have been discussed, e.g., in hippocampal neurons [3]. Dissociated culture system with multi-electrode array is fully useful for elucidation of network dynamics of neurons [4]. Kudoh et al. [5] have been investigating action potentials of rat hippocampal neurons cultured on the dish with multi-electrode array. Bettencourt et al. [6] identify a relationship between the three electrodes in the dissociated culture system with information entropy. However, they don’t discuss logicality of living neuronal networks enough. We don’t also exactly comprehend logicality of living neuronal networks in multi-electrode array connected with the outer world.

In this paper, we formulate a new algorithm to acquire logical relationship between three electrodes with fuzzy connective operators, and identify the relationship by adjusting parameters of $t-norm$ and $t-conorm$ operators [7]. We additionally introduce an example of straight running of fuzzy bio-robot, and discuss plasticity of living neuronal network [8]–[12]. We define here fuzzy operator with Schweizer’s $t-norm$ and $t-conorm$ operators [13], which represents logical operator, algebraic operator, bounded operator, drastic operator and so on. With the Schweizer’s $t-norm$ and $t-conorm$ operators, we formulate a new algorithm to acquire logicality of electrodes in rat hippocampal neurons cultured on the dish. Additionally, we introduce the fuzzy bio-robot system in an example of straight running [14], [15]. We use a Khepera II robot as outer machine connecting with living neuronal networks. We succeeded in straight running with fuzzy logic [16]. Through the example, we discussed plasticity of living neuronal networks by analyzing the membership values in the antecedent part of fuzzy rules. Especially, we could associate a spatial pattern of action potentials in multi-electrodes with a particular phenomenon in the outer robot. We concluded that regularity of neuronal responses can control the outer robot logically.

II. NEURON CULTURE AND MULTI-ELECTRODE ARRAY

The conduct of all experimental procedures was governed by The Animal Welfare, Care and Use Committee in AIST. The hippocampus neurons were prepared from a Wister rat on embryonic day 17-18 (E17-18) and cultured by the previously described method [5]. Briefly, neurons were dissociated by treatment with 0.175% trypsin (Gibco, U.S.A.) and cultured by placing 500,000 cells in a 7mm diameter-glass ring on poly-D-lysine coated MED probe (Alpha MED Sciences, Japan), which has 64 planar placed microelectrodes. The medium is based on D-MEM/F12, supplemented with 5% horse serum (Gibco, U.S.A.) and 5% fetal calf serum (Gibco, U.S.A.).

The field action potentials were recorded 10-100 days after the start of the culture. The spontaneous action potentials (sAPs) were gathered with the MED64 system (Alpha MED Sciences, Japan) [4] at a 10-20 kHz sampling rate. Evoked field action potentials (eAPs) at 62 sites in the cultured networks were recorded with the MED64 system at a 20 kHz sampling rate. All experiments were carried out at room temperature (20 – 25°C). The recorded spikes were detected by our developing program, sorted and classified by the amplitude versus decay time distributions using k-means cluster cutting method and converted to event trains.

III. FUZZY CONNECTIVE OPERATORS

The fuzzy connective operators consists of $t-norm$ and $t-conorm$ operators. $t-norm$ and $t-conorm$ operators. $T(x, y) : [0, 1] \times [0, 1] \rightarrow [0, 1]$, which satisfies four conditions, id est, boundary conditions,
monotonicity, commutativity and associativity. \(t \)-norm operator includes logical product, algebraic product, bounded product and drastic product. \(t \)-conorm operator \(S \) is dual function of \(t \)-norm operator, which is expressed by \(S(x, y) : [0, 1] \times [0, 1] \rightarrow [0, 1] \), and also includes logical sum, algebraic sum, bounded sum and drastic sum.

On the other hand, many parametric \(t \)-norm and \(t \)-conorm operators have been proposed. By changing the values of parameter, the parametric fuzzy operator become equal to the drastic \(t \)-norm to the drastic \(t \)-conorm. For example, the parametric fuzzy operator proposed by Schweizer [13] is expressed as follows:

\[
T(x, y) = 1 - ((1 - x)^{p_n} + (1 - y)^{p_n})^{1/p_n} - (1 - x)^{p_n}(1 - y)^{p_n}^{1/p_n} \quad (1)
\]

\[
S(x, y) = (x^{p_n} + y^{p_n} - x^{p_n} y^{p_n})^{1/p_c} \quad (2)
\]

where, \(p_n \) and \(p_c \) are parameters.

By changing values of the parameter \(p_n \) and \(p_c \), the Schweizer \(t \)-norm and \(t \)-conorm become equal to logical operator \((p = \infty) \), algebraic operator \((p = 1) \) and drastic operator \((p = 0) \).

The membership function \(F_{i}^{z} \) with the delay deviation \(s_z \) is also defined in the electrode \(x \) as the input electrode as same as the electrode \(z \). Our purpose is here to let the degree of coincidence between \(F_{i}^{z} \) and \(F_{i}^{x} \) maximize on the time \(x \), where we denote the minimum degree of coincidence as \(\mu_{xz} \). To let the degree of coincidence maximize, the width of time-window \(w_z \) and the delay deviation \(s_z \) are adjusted. We denote the optimum pair of the width of time-window and the delay deviation by \(\text{Opt}(w_z^*, s_z^*) \).

\[
\mu_{xz} = \sup_t \mu_{F_i^z(t)} \land \mu_{F_i^x(t)} \quad (5)
\]

\[
\text{Opt}(w_z^*, s_z^*) = \max_{w_z, s_z} \mu_{xz}. \quad (6)
\]

We also optimize the pair of \(\text{Opt}(w_y^*, s_y^*) \) in the electrode \(y \) and the electrode \(z \).

Lastly, we calculate the output of the Schweizer operator with two inputs of the center \(a_{z-s}^x \) and the center \(a_{y-s}^x \) of membership function in the electrode \(x \) and \(y \), respectively.

\[
T(x, y) = 1 - ((1 - a_{z-s}^x)^{p_n} + (1 - a_{y-s}^x)^{p_n})^{1/p_n} - (1 - a_{z-s}^x)^{p_n} (1 - a_{y-s}^x)^{p_n}^{1/p_n} \quad (7)
\]

\[
S(x, y) = (a_{z-s}^x)^{p_n} + (a_{y-s}^x)^{p_n} - (a_{z-s}^x)^{p_n} (a_{y-s}^x)^{p_n}^{1/p_n} \quad (8)
\]

We then adjust the parameter \(p_n \) of \(t \)-norm and parameter \(p_c \) of \(t \)-conorm to minimize a deviation between the center \(a_i^z \) in the electrode \(z \) and Schweizer output, and select the optimum parameter \(p^* \) from either \(p_n \) or \(p_c \) to minimize the deviation.

\[
p^* = \{p_n, p_c\} \min_{p_n, p_c} \{ |T(x, y) - a_i^z|, |S(x, y) - a_i^z| \}. \quad (9)
\]
For tangible data analysis, we selected three sets of input electrodes from 63 electrodes because of the output in the 60th electrode (60el). Figure 2 shows the location of three combinations of the input and output electrodes. In 60el, we detected the sudden increasing of pulse frequency at 102.4s after the pulse frequency drastically decreased to 6 times at the around 95s. For the analysis, we focus this characteristic pulse increasing at 102.4s, and analyzed how this characteristic pulse influenced it for the following three combinations.

1. A combination of \((x, y, z) = (51el, 59el, 60el)\)
2. A combination of \((x, y, z) = (43el, 50el, 60el)\)
3. A combination of \((x, y, z) = (35el, 42el, 60el)\)

The result is shown in Figure 3. We showed the degree of coincidence between membership functions \(\mu^*_xz\) and \(\mu^*_yz\), and the optimum parameter values of fuzzy operators \(p^*_n\) and \(p^*_c\). In the first combination of electrodes \((x, y, z) = (51el, 59el, 60el)\), the maximum degrees of coincidence are adjusted \(\mu^*_xz = 1.0\), \(\mu^*_yz = 1.0\) with \(w_x = 11s\), \(w_y = 10s\), and the optimum parameter of Schweizer operator is converged to \(p^*_c = 730.5\). In the second combination of electrodes \((x, y, z) = (43el, 50el, 60el)\), the maximum degrees of coincidence are adjusted \(\mu^*_xz = 1.0\), \(\mu^*_yz = 1.0\) with \(w_x = 11s\), \(w_y = 10s\), and the optimum parameter of Schweizer operator is converged to \(p^*_c = 617.98\). In the third combination of electrodes \((x, y, z) = (35el, 42el, 60el)\), the maximum degrees of coincidence are adjusted \(\mu^*_xz = 0.76\), \(\mu^*_yz = 0.91\) with \(w_x = 11s\), \(w_y = 10s\), and the optimum parameter of Schweizer operator is converged to \(p^*_c = 630.23\). From these results, we conclude that the characteristic pulse increasing in 60el at 102.4s propagates to \((51el, 59el) \rightarrow (43el, 50el) \rightarrow (35el, 42el)\). And then, the parameters of Schweizer operator have been converged to \(p^*_c = 730.5\) in \((51el, 59el)\), \(p^*_c = 617.98\) in \((43el, 50el)\), and \(p^*_c = 630.23\) in \((35el, 42el)\). These parameters mean logical sum. However, we should notice that the parameter of Schweizer operator at around 102.4s is \(p^*_n = 0.0\), which means the drastic product. Therefore, despite all of our intuition, we conclude that the logicality of electrodes became to drastically change to weak OR relation from strong AND relation when a crowd of the pulses was fired and the pulse propagated distantly and widely.
V. FUZZY BIO-ROBOT SYSTEM

Fuzzy bio-robot includes two kinds of fuzzy logic units, that is FLTD and FLBU. The FLTD, Fuzzy Logic unit in Top Down, is located in top-down processing, and infers the rotation speed of robot actuator from the pattern of action potential in multi-electrode array. The FLBU, Fuzzy Logic unit in Bottom Up, is located in bottom-up processing, and infers the electrical stimulation points in multi-electrode array from output values of robot sensors. Figure 4 explains the relationship between living neuronal networks and robot, and Figure 5 shows the concept of fuzzy bio-robot system.

Figure 6 shows how to control a robot with living neuronal networks via fuzzy logic. We designed closed loop in which the robot of Khepera II receives the rotation speed of actuator in [-20, 20] from FLTD for eight inputs of patterns in multi-electrode array. Additionally, the multi-electrode unit receives stimulation points from FLBU for eight IR sensors of the robot. We designed 256 fuzzy rules with eight inputs and two output in FLBU and FLTD, respectively.

Now, we explain how to design fuzzy rules in FLTD. First, we divide 64 electrodes in eight parts as inputs for FLTD, and define two kinds of membership functions of "High" and "Low" potentials in each part of electrodes. Thus, we become to constitute 256 fuzzy rules. Two electrodes are arbitrarily selected as stimulus points, and we detect the potential response for the first stimulus from other 62 electrodes. The pulse pattern of potential responses is input to the antecedent part of fuzzy rules, and the membership value of each rule is calculated. Next, we detect the pulse pattern of potential responses for the second stimulus, and also calculate the membership value of each rules. For two different membership values, we calculate the subtraction between them and assign motor speed of robot actuators to rules whose differentials are large. We additionally adjust the value of motor speed better with the steepest descent method.

To demonstrate the regularity of neuronal networks, we applied the fuzzy bio-robot system to the straight running. We estimate if the Khepera robot can run straight in a track without bumping into a wall. The running track is the length of 120mm and the width of 90mm. Figure 7 shows the running track.
The deviation between the output of FLTD and target output is shown in the part A of Figure 8. The variance of each 10 times of learning is shown in the part B. The deviation is gradually decreasing according to the number of learning. Actually, the deviation of the left actuator, L_{speed}, decreased by 40.3% for 50 learning times and become 1.673. The deviation of the right actuator, R_{speed}, decreased by 27.8% and become 1.224.

Next, we show the motor speed, the subtraction $L_{\text{speed}} - R_{\text{speed}}$ and $R_{\text{speed}} - L_{\text{speed}}$ of each fuzzy rule in Figure 9. We should notice that the control values to turn on the right are assigned to the consequent part of the higher number of fuzzy rules because of the large deviation of $L_{\text{speed}} - R_{\text{speed}}$. The control values to turn on the left should be also assigned to the consequent part of the lower number of fuzzy rules because of the large deviation of $R_{\text{speed}} - L_{\text{speed}}$.

We next monitored the membership value of fuzzy rules fired while the robot is running in a track under condition of $1mM$ density of Mg_2^+. Figure 10 shows a trajectory of the robot running and the membership values in FLTD. The part A shows the changing of sensor value detected with Khepeara. The part B shows the membership values in FLTD. We also figured the changing of membership value under condition of $5mM$ density of Mg_2^+ for comparison of $1mM$ density. The Khepera II robot could run in a straight without bumping on the wall. In the part A, we monitored two high frequency pulses of “Input 4” for “L Stimulus”, and “Input 3” for “R Stimulus”. In the part B, we detected the high membership value in the 256th fuzzy rule whose membership functions are all “Low” potentials. That is, the Khepera robot is usually running in a straight with spontaneous action potentials with the 256th fuzzy rule, however the specific fuzzy rules to avoid collision with wall are fired when the Khepera was too close to wall.

To discuss the fuzzy rules to avoid collision with wall in more detail, we monitored fuzzy rules whose membership values are relatively higher until 40s in Figure 11. In the part A, the Khepera robot detects the wall in the left side, and turns on the right with the 13th and 14th fuzzy rules, or the 15th and 16th fuzzy rules, simultaneously. The specificity of these fuzzy rules pattern appears regularly. In other words, the neuronal networks have regularity of logical potential response.

Finally, we observed the trajectory of the Khepera with camera placed above of the track course. We image a base line drawn along the centerline of the track course from the start position of the Khepera. We detected the deviation between the base line and the trajectory of the Khepera, and defined absolute value of the deviation as evaluation value. Figure 12 shows a change of the evaluation for running trials of iteration. The evaluation values decrease as running trials of iteration, and the Khepera became to run along the base line. We conclude that the decreasing will be due mainly to plasticity of neuronal networks.

In addition, we calculated the rate of the Khepera completed the course in 20 trials in Table I. The completed courses were 16 times, and the case of the Khepera crashed on the wall and stopped were four times. However, the rate of completed the course is high with 80%. We conclude that the logicality of neuronal networks and the adaptability of the fuzzy logic work efficiently. We should also conclude that the rate 80% is extremely high because of living neuronal networks.
VI. CONCLUSION

In this paper, we formulated a new algorithm to acquire logical relationship between three electrodes with fuzzy connective operators. We also introduced an example of straight running of fuzzy bio-robot, and discussed plasticity of living neuronal network connected to the robot. We should discuss the relationship between plasticity of living neuronal networks and adaptability of fuzzy logic more deeply in the near future.

ACKNOWLEDGMENT

This work was partially supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan under Grant-in-Aid for Scientific Research 18500181, 19200018, and 18048043.

REFERENCES

ner multielectrode array for extracellular recording: application to
hippocampal acute slice,” Journal of Neuroscience Methods, Vol.93,

dependent synaptic potentiation in cultured cerebral neurons,” Brain

tional structure of cortical neuronal networks grown in vitro,” Physical

with a learning function using the steepest descent method,” Japanese

[8] S.N.Kudoh, I.Hayashi, and T.Taguchi, “Synaptic potentiation re-
organized functional connections in a cultured neuronal network
connected to a moving robot," Proc. of the 5th International Meeting
on Substrate-Integrated Micro Electrode Arrays (MEA2006), pp.51-52,
Reutlingen, Germany in July 4-7, 2006.

in living neuronal networks connected to moving robot,” Proc.
of 2006 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE2006) in 2006 IEEE World Congress on Computational In-
telligence (WCCI2006), pp.6271-6275 (No.FUZZ4516), Vancouver,
Canada in July 16-21, 2006.

neuronal network connected to moving robot,” Proc. of Interna-
tional Symposium on Artificial Brain with Emotion and Learning

living neuronal networks connected to moving robot, Proc. of 8th
International Symposium on advanced Intelligent Systems (ISIS2007),
pp.79-81, Sokcho, Korea in September 5-8 (2007).

“Biomodeling system - Interaction between living neuronal network
and outer world,” Journal of Robotics and Mechatronics, Vol.19, No.5,

inequalities," Publicationes Mathematicae Debrecen, Vol.8, pp.169-

[14] D.J.Bakkum, A.C.Shkolnik, G.Ben-Ary, P.Gamblen, T.B.DeMarse,
and S.M. Potter, “Removing some ‘A’ from AI: Embodied cultured
networks,” in Embodied Artificial Intelligence, edited by F.Iida,
2004.

networks for adaptive goal-directed behavior,” PLoS Comput Biol,

sition of fuzzy knowledge by NN and GA,” Proc. KES98, pp.69-78,
1998.