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Abstract—Rat hippocampal neurons reorganized a complex
networks on microelectrodes array dish. The living neuronal
network can distinguish patterns of action potentials evoked by
different inputs, suggesting that a cultured neuronal network
can represent particular states as symbols. A neuro-robot-hybrid
system with living neuronal network and miniature moving robot
was developed. We use a Khepera II robot for interfacing with
a living neuronal network and the outer world and succeeded in
performing collision avoidance behavior with premised control
rule sets. Using self-tuning fuzzy reasoning, we associated a
distinct spatial pattern of electrical activity with a particular
phenomenon in the outside of the culture dish. The particular
relationship between network activity and outer phenomenon
was performed by control rules of electrical stimulation to the
neuronal network, responding to outer phenomenon, while a
spatio -temporal patterns of neuronal activity were linked to
output devices by premised control rules. We succeeded in
performing collision avoidance, and found that fluctuation of
neuronal responses evoked by sensor output of robot body was
controlled by the interaction between neurons via synapses.

I. I NTRODUCTION

Biological intelligence has characteristic functions which
artificial intelligence hardly perform yet. Symbol grounding
problem, frame problem are often cited as examples of tech-
nological difficulties of artificial intelligence reliable in real
world. In addition, autonomous generation of algorythms is
also one of the features of biological intelligence. Against
these oft-expressed problems, ”embodied cognitive science”
offers some good solutions [1]. In the concept of embodied
cognitive science or robotics, some a priori rules for behaviors
are embedded in the relationships of sensors and actuators.
Circuits are hierarchically connected each other by plastic (in
the meaning of availability of adjusting) links. This simple
architecture, such as subsumption architecture, often perform
amazing adaptability and intellectual behavior [2]. One of the
remaining problems for realization of creature-like intelligence
is how to generate ”phenomenal consciousness” by artificial
components [3]. This philosophical hard problem is difficult
to discuss in a field experimental science, but we think that
we can construct such system with phenomenal consciousness
or qualia by integration of embodied cognitive robotics and
self-organizing network components. A quick way to provide
such self-organizing network is to use living neuronal network
(LNN) reorganized in vitro (fig.1). We can prepare dissociated

Fig. 1. Example of cultured living neuronal network (E18DIV22). The black
bar indicates 100μ m.

neurons from rat hippocampus and cultivate neurons on culture
dish [4]. Cultured neurons elongated neurites and formed a
complex network even in the artificial condition [5]. Using
culture dish with planar microelectrodes, we observed spon-
taneous action potentials without any external current inputs,
suggesting that interaction between neurons was fully active in
the culture dish [6], [7]. The cultured living neuronal network
had internal states represented by spatio-temporal pattern of
action potentials. In addition, a certain pattern of action
potentials were evoked by a current input, corresponding to
input from outer world(fig.2). It seems that such an input
only ”recall” a particular internal state to the network. The
relationship between an object (represented by current inputs
from sensors) in outer world and an internal state is not strict
but loose. The relationship of a particular object and an internal
state of neuronal network linked to the object is defined only
by reproducibility of such relationship in experience of the
cognitive system. This framework is same as definition of
”qualia” in ”Mind and the world order” by Lewis [8].

II. M ETHODS

A. Preparation of LNN

Primary cultures of rat hippocampal neurons were used as
LNN. The hippocampal region was dissected from Wistar rats
on embryonic day 17 (E17) or E18 and neurons were disso-
ciated. Procedure of primary culture of rat hippocampal neu-
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Fig. 2. Examples of spontaneous action potentials (left) and evoked action
potentials (right) recorded by 64 electrodes. Scale bar indicates 1 s× 40 µV.

rons was conventional one and was previously described [4].
Briefly, the rat hippocampal neurons were dissociated by
0.175% trypsin (Invitrogen-Gibco, U.S.A.) in Ca2+- and
Mg2+phosphate-buffered saline (PBS-minus, Nissui) supple-
mented with 10 mM glucose at 37oC for 10 min. Then neurons
were plated on a MED probe (Alpha MED Science, Japan),
which is a culture dish with 64 planar microelectrodes on the
bottom [9]. The MED probe was precoated with 0.02% poly
ethylene-imine overnight. Neurons were seeded in the cloning
ling put on the center of a MED probe. Density of seeded cell
was 7800 cells/mm2. The culture medium was based on the
mixture of Dulbecco’s modified minimum essential medium
(Invitrogen-Gibco, U.S.A.) and Ham’s F12(Invitrogen-Gibco,
U.S.A.), supplemented with 5% Horse serum and 5% fetal
bovine serum. Half of the culture medium was exchanged to
fresh one every two days. The neurons were cultured for 60
days at 37oC in 5% CO2/95% air at saturating humidity. The
conduct of all experimental procedures was governed by the
Guidelines for the Care and Use of Laboratory Animals of the
AIST.

B. Measurement of multiple site extracellular potentials by the
electrode array dish

Extracellular action potentials were recorded in the normal
culture medium at 20-60 days in vitro. The extracellular
potentials were gathered through 64 electrodes simultaneously
with the integrated MED64 system (Alpha MED Science,
Japan) at a sampling rate of 10 kHz. All experiments were
carried out at room temperature (20-25oC ). The spikes of
action potentials were detected automatically by amplitude
threshold-based algorithm of the detection. The threshold was
determined to be 3 times of baseline noise during the 50
msec time window. Extra large spikes of stimulation artifact
were omitted. Spike-sorting procedure was not performed in
this study, because the small number of neurons were sensed
by a single electrode, and spike-sorting procedure requires of
much computational cost, preventing the in-time processing to
control robot.

C. Design of Vitroid

We performed closed-loop interaction between LNN and
outer world, interfaced by a neuro-robot hybrid system. The
idea of integration of a moving robot and a living neu-
ronal network was firstly proposed by Potter’s group as Hy-
brot [10], [11], [12]. In their recent papers, robot or simulated
robot were controlled according to action potentials evoked
within 100 ms after proving electrical stimulus. These ”probe
stimulus” were applied to the neural network every 5 seconds.
In addition they applied randum stimuli mimicked constantly
derived sensory inputs of animals. They used well-designed
stimulation protocols and paid attention to make the neuronal
network be stable. Interestingly, they also succeeded in goal-
directed learning. Their design of closed-loop interaction look
smart for controlling of LNN [13].

On the other hand, we do not stimulate the neuronal
network continuously but stimulate only when actual sensors
are activated. Our neuro-robot independently treated a current
stimulation to LNN and a detection of action potentials. The
detection of action potentials was routinely performed every
50 ms time window, independent to the inputs to LNN. This
means that the system does not discriminate spontaneous
activity and activity evoked by sensor inputs. Indeed, it is
difficult to find ”pure spontaneous” activities in our brain,
because the stream of numerous sensory inputs flow into an
animal brain. But neurons cannnot distinguish between signals
from sensor and signals come from spontaneous activity. These
indistinctive action potentials represent internal states of LNN.
Input from outer world only recall one of particular state
of internal state of LNN. We think a responce of neuronal
network is not tightly coupledto an input from outer world.
The relationship between a signal coresponding to an object
in outer world and an internal state is loose and fluctuated. We
think these fluctuations are not noise but reflect on a certain
type of information processing in LNN. In our paradigm,
we do not perform conscious control of the living neuronal
network. Instead of that, we adapt interface to LNN. The
direction of self-tuning process of LNN is not often suitable
for reasonable behavior, so we have to design the interface
to match the reasonable behavior and direction of self-tuning
process of LNN. We call neuro-robot system with such direct-
coupling type of interface as ”Vitroid”. The system is a sort
of ”test tube” for cognitive agent made by living component.
LNN is main processing unit of Vitroid and all decision-
making of the system is performed by this LNN, including
learning. Vitroid posseses at least 2 interpreters. An ”output
interpreter” translates detected activity patterns of LNN into
behaviours of robot. An ”input interpreter” translates outside
phenomena into electrical stimulation to LNN. We embedded
rules for reasonable reaction against outside object into these
interpreters, just like couplings between actuator and sensor
pairs in robot designed by embodied cognitive science. There
are many candidate of algorithm for tranforming the spatio-
temporal pattern of action potentials to control value. Currently
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self-tuning fuzzy reasoning is used for output interpretor in this
study [14]. The output interpreter uses parallel 2 sets of 256
fuzzy rules(fig.3). The 2 set of fuzzy rules have a common

Fig. 3. Implementation of simplified fuzzy reasoning in output interpreter.

set of 256 antecedent clauses (if-part) and 2 distinct set of
256 consequent clauses. The output interpreter receives eight
signals from LNN. Each signal is the number of detected
action potentials per 50 ms time windows from 8 electrodes.
Each input of fuzzy reasoning unit has two types of fuzzy
labels, high-frequency and low-frequency. 256 fuzzy rules are
constituted by 8 inputs with high-freq. and low-freq. fuzzy
labels. 256 fuzzy rules is over-spec for only two states recog-
nition, but this large number of rules is in order to describe all
classified patterns of eight inputs. That is required rather for
analysis of neuronal activity, not for control of actuators. The
maximum frequency of the action potential in all electrodes
is made the maximum of the horizontal axis of a membership
function. The maximum of membership function assigned to
the high-frequency label is at three fourths of the points of
maximum frequency, and the maximum of the membership
function assigned to a low-frequency label was at one fourth
of the points of maximum frequency. For simplification, each
membership function for all 8 ch inputs is the same function
currently. The common 256 antecedent clauses are used as
pattern templates in the output interpreter. Inputted pattern is
compared to these templates, and compatibility degrees are
calculated according to similarity between inputted pattern and

each template. Compatibility degree of each rule (template) is
large when spatial pattern of evoked action potentials is similar
to the template. Then a value of motor speed is decided as
weighted average of value of consequent clause (then-part) of
each fuzzy rule, by following equation;

hn =
8∏

k=1

µAk(xk) (1)

zo =

256∑
n=1

zn · hn

256∑
n=1

hn

(2)

where zo represents output value of fuzzy reasoning,zn

represents a value of the consequent clause of each rule,hn

represents a compatibility degree of each rule,µAk represents
a fuzzy number of each input in each rule, andxk represents
each inputted value to fuzzy reasoning. Fuzzy reasoning is not
necessarily best much for the system because requirement is
a kind of a pattern recognition. To use fuzzy reasoning is rea-
sonable only when there is a quantitative relationship between
an inputted value and an output control value. For example,
If the system should be designed to make an output value
”speed of actuator” strongly decrease by an inputted value
”a curve is very acute”, fuzzy reasoning works effectively.
However, inputted value, a pattern of evoked action potentials
has no relationship to speed of an actuator in Vitroid. To
make such quantative relationships between feature of inputted
ptterns and speeds of actuators, we adjust consequent clause of
each fuzzy rule by teacher learning. The tuning of consequent
clause by teacher learning is performed by minimization of
differences between teacher signal and output value of each
fuzzy reasoning. Learning unit generates 3 categories of stimu-
lation signals (L or R or No stimulation) and optimal speeds of
actuators as a teacher signal. Then electrical stimulations are
applied to a LNN, and corresponding responces are gathered
and inputted in a fuzzy reasoning unit. Out put of the fuzzy
reasoning is assessed and the value of a consequent of the
each rule is adjusted. This consequent tuning is performed by;

zn = zn + τ · hn · (zt − zo) (3)

for all learning trials i = 1,2,· · · ,n. Wherezn represents a value
of the consequent clause, andhn represents a compatibility of
degree each rule.τ represents a learning coefficient, which
desides quantity of the adjustment,zt represents a teacher
signal (target value) for output of fuzzy reasoning, andzo

represents output value of fuzzy reasoning. As a result of
that, the values of consequent clauses are adjusted mainly by
similarity between inputted pattern and target pattern (Target
pattern means the pattern repeatedly evoked by a particular
input, and most general and most general one). Another
dominant factor of adjustment is independency of the inputted
pattern against stimulation category (L orR).
On the other hand, simple summation of IR sensor value is
used for input interpreter. The value of 3 IR sensors at a
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left side and 3 IR sensors at a right side of the robot body
are summed respectively. Then the summation of the value is
compared. If a value of summation of left side sensors exceeds
a value of summation of right side sensors plus threshold, input
interpreter stimulate a LNN via an electrode assigned to ”left”
in advance, vice versa. The parameters of these interpreters are
fixed, meaning that the artificial part of framework of vitroid
is not plastic. Even though LNN and interpreters initially
adapted each other quite well, plastic feature of LNN modified
the matching between LNN and artificial framework. As a
result of that, there is a possibility that information processing
in LNN changes to inadequate for reasonable behavior. We
focused on the change of dynamics of LNN, expected to suit
for reasonable behavior of Vitroid.

D. System integration of Vitroid

We integrated a robot body, control computers, electro-
physiological components and a network of rat hippocampal
neurons(fig.4). We use a Khepera II robot (K-Team) or Robot
constructed by LEGO mindstorm NXT kit for a body of
Vitroid. We used multisite recording system for extracellular
potentials [15], [16], [17] (MED64 system, Alpha MED Sci-
ence) as electrophysiological components, which include 64
signal amplifiers, 2ch of integrated stimulators and integrated
A/D-D/A converters (multifunctional data acquisition circuits).
Computers are employed for controlling electrophysiological
components via multifunctional data acquisition circuits, and
for controlling a robot via RS232C interface. Fuzzy reason-

Fig. 4. System integration of Vitroid. Vitroid is constructed by 5 programs
running on 2 computers, a LNN and a robot body. An information flow form
a robot to LNN (afferent pathway) and an information flow form a LNN to
a robot (distal pathway) constitute closed-loop.

ing programs were implemented in an output and an input
interpreter, respectively. The ”Client” program controled a
robot body and read the sensor values of a robot body. The
”multi Stimulator” program stimulates the neuronal network
according to stimulation pattern command generated by an in-
put interpreter. Programs exchange processed data information

mediated by a datasocket transfer protocol (DSTP, National
Instruments).

E. Test run of Vitroid

After tuning of parameters of interpreters, we make Vitroid
run experiments in collision avoidance. Vitroid was put on
between 2 walls arranged at parallel, then we turned on
the switch of connecting the robot body and a LNN. The
experiment was stopped when Vitroid failed to avoid collision
to the wall, or Vitroid reached to the end of the test course.
Experiments were performed under the condition that the
concentrations of MgCl2 in the extracellular recording solution
of a LNN were 1 mM and 5 mM. Culture medium was
DMEM/F12 medium base and DMEM/F12 medium includes
0.7 mM Mg2+. The culture medium included about 1mM
Mg2+, though accurate concentration of Mg2+ is unknown
because of addition of serums. So, 1 mM MgCl2 concentration
is normal condition for extracellular solution of a LNN, while
5 mM of MgCl2 concentration is a comparatively high con-
centration. The activities of divalent cation channels, such as
Ca2+ channel and NMDA-type glutamate receptors, decrease
under such high Mg2+ concentration [18].

As a result of that, frequency of spontaneous activity de-
creases, meaning background activity irrelevant to inputs form
outer world decreases. We compared responses of a LNN to
input from outer world in 1 mM and in 5 mM Mg2+ recording
solution.

III. R ESULTS AND DISCUSSIONS

A. Teacher Learning of output interpreter

Before test-run, an output interpreter of Vitroid should be
trained. 150 trials of stimuli were applied to a LNN for
learning of consequent clauses of fuzzy rules. Initial value
of consequent clause of each rule equally set at 5. Teacher
signals corresponding to an obstacle in left side were 10 for
a left actuator and 1 for a right actuator. Teacher signals
corresponding to obstacles in right side were 1 for a left
actuator and 10 for a right actuator. Because of this sym-
metrical setting of teacher signals, distributions of actuator
speed in consequent clauses were in contrast with the speed
of counter actuator(fig.5). Learning was performed in 5mM
Mg 2+ recording solution in order to reduce spontaneous
activity, which obfuscates the learning. Adjusted values of
consequent clauses did not completely converge during 150
trials of learning, but we gave priority to avoid damage of
neurons by repeated current stimuli.

B. Collision avoidance of Vitroid

Vitroid succeeded in performing the zigzag run of between
two walls arranged at parallel, without collision with a wall.
In later half of experiments, it seemed that collision avoid-
ance delayed gradually (fig.6). The several reasons can be
considered about that; first is delay of communication between
each unit of a vitroid system. Second is wrong modifications
of neuronal responses to inputs (L or R). Correspondences
between labels for inputs to IR sensors and responses of a
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Fig. 5. An example of teacher learning of fuzzy reasoning of output
interpreter. A. teacher signal and value of consequent clause for L and R
actuators of each trial during teacher learning. B. Distributions of 256 values
of consequent clauses for L and R actuators.

Fig. 6. An example of collision avoidance of vitroid under 5mM Mg2+ con-
dition. Upper panel indicates a trajectory of robot body during an experiment.
Lower panel indicates number of action potentials in 50 mS time windows.
Upper trace indicates labels determined by IR sensors of a robot body. Lower
traces are responses of 8 neurons recorded by 8 microelectrodes.

LNN were changed to be rather stable in later half. So, it seems
that delays of communications were influenced on the collision
avoidance. That point should be improved. The responses of
neurons to inputs from outer world were relatively stable.
The result suggests that inputs linked to ”L-side obstacles”
or ”R-side obstacles” evoked reproducible pattern of electrical
activity, even though spontaneous autonomous activity varied
during experiments. This reproducibility, however, was less
than perfect, because the spatiotemporal pattern of the network
activity was determined not only by input stimulation but also
spontaneous internal states of the network. This spontaneous
activity reflected the degree of fluctuation of the internal
state of a LNN. When concentration of Mg2+ in recording
solution was reduced to 1mM, frequency of the spontaneous

activity increased drastically, suggesting that fluctuation of
the internal state also increased (fig.7). Our expectation of

Fig. 7. Drastic elevation of spontaneous activities by reduced Mg2+

condition. A LNN is same one in both condition, E18DIV29.

stability of responses of neurons to sensor inputs was that the
stability would be abolished and responding pattern of neurons
would be confused. However, the responses of neurons to
sensor inputs were rather more stable than in 5mM Mg2+

(fig.8). This suggests that the spatio-temporal pattern of action

Fig. 8. An example of collision avoidance of vitroid under 1mM Mg2+

condition. format and symbols are same as in fig.reff5.

potentials evoked by sensor inputs was identical and stable
equally in 1mM and 5mM Mg2+, even though fluctuation
of the internal state increased in 1mM Mg2+. Even in a
highly fluctuating state, LNN seemed to have mechanisms for
adjusting stabilization of evoked response.

This feature of LNN is thought to be one of the fundamental
function of animal brain for flexible adaptation to outer world.
Now we are analyzing the mechanism, using Vitroid, our
interaction system between neurons and outer world.

IV. CONCLUSION

The living neuronal network was able to distinguish patterns
of action potentials evoked by different inputs. Using self-
tuning fuzzy reasoning, we associated a distinct spatial pattern
of electrical activity with a particular phenomenon in the

273



outside of the culture dish and Vitroid, our robot system with
interpreter units and a living neuronal network, succeeded
in performing collision avoidance. In addition, the spatio-
temporal pattern of action potentials evoked by sensor inputs
was identical and stable even under the highly fluctuating
internal state. The system is a good testing platform for
clarifying interaction between living neurons and the outer
world.
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