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Abstract: Tt is the purpose of this paper to formulate the Group Method of Data Handling
(GMDH) by the possibility model. The GMDH formulated by the possibility model is called
the fuzzy GMDH. To formulate the fuzzy GMDH, we discuss possibilistic linear regression by
the LP problem, called Min Problem. In the fuzzy GMDH, the estimated model by using
possibilistic linear regression with a multilayer procedure is a non-linear system with
parameters in the form of fuzzy numbers. The estimation by the fuzzy GMDH can be obtained
in fuzzy numbers. Thus, this approach can be regarded as fuzzy interval analysis.
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1. Introduction

Linear regression analysis is a well-known technique for obtaining mathemati-
cal models which represent the relationship between input and output data.
However, if the relationship between input and output data is complex and
non-linear, it is not easy to determine a set of input variables for identifying
models and the number of powers of input variables, since we can consider many
kinds of combinations of input variables. Thus, the GMDH [4, 5] (Group Method
of Data Handling) has been developed to obtain the optimal combination of input
variables of non-linear models. In the GMDH, the estimated non-linear model is
obtained by combining second-order functions of two variables with a multilayer
procedure. In each layer, parameters of the function of two variables are
determined by linear regression analysis. Hence, the GMDH can be said to be
based on linear regression analysis.

With the above view, we propose the fuzzy GMDH based on fuzzy linear
regression analysis in this paper. Fuzzy linear regression analysis, called also
possibilistic linear regression has been proposed by Tanaka et al. [1] and
discussed in detail in [2, 3]. We can represent fuzziness by using possibilistic linear
systems. In possibilistic linear regression, deviations between the observed data
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and the estimated values are assumed to depend on the possibility of the system
structure. Thus, we regard these deviations as the possibility of system param-
eters. However, in possibilistic linear regression, we have to determine a
structure of the model in advance, as in conventional linear regression analysis.
Thus, in this paper, we prop?e/a new method by which the structure of the
model can be automatically found. Following the concept of the GMDH, we
formulate the fuzzy GMDH based on possibilistic linear systems. In our
formulation of the fuzzy GMDH, our characteristic is that parameters in the
model are obtained as fuzzy numbers by possibilistic linear regression. The
concept of fitting index of the estimated model to the data and a stopping rule in
the multilayer procedure are introduced to the algorithm of the fuzzy GMDH in
order to obtain a good estimation and terminate the algorithm. The fuzzy GMDH
is a powerful method for obtaining the non-linear model for identifying a fuzzy
phenomenon.

To explain the applicability of the algorithm of the fuzzy GMDH, we apply the
fuzzy GMDH to structural identification of the amount of production of
computers in Japan and to analysis and prediction of water temperatures in a dam
reservoir. The fuzzy GMDH is a new method proposed from the view-point of
possibility. This method might be called the fuzzy interval analysis and its results
can be obtained in fuzzy numbers.

2. Possibilistic linear systems

A linear system whose parameters are fuzzy numbers, is called a possibilistic
linear system. It is assumed that a fuzzy number M, p,,:R— [0, 1], satisfies:

M, = {x | up(x) =1} is a closed interval. 6))
dx such that u,(x) =1. 2)
trg(Axy + (1 — A)x2) = ppg(x1) A ppg(x2) for A €0, 1]. 3)

A general representation of a fuzzy number is given as the L-R type of fuzzy
numbers by Dubois and Prade [6]. Since we regard only a symmetric fuzzy
number in this paper, a fuzzy number is defined as follows.

Definition 1. A symmetric fuzzy number A denoted A = (a, c), is defined by
Ha(x) = L((x — a)/c), c¢=0, 4)

where the reference function L(x) satisfies (i) L(x)=L(—x), (ii) L(0)=1 and
(iii) L(x) is strictly decreasing on x > 0.

As an example of L(x), max(0,1— |x|) is used in this paper. Thus, a fuzzy
number A becomes a triangular fuzzy number with the center value a and the
width c.

An arithmetic with fuzzy numbers is defined by the extension principle [6] as
follows.
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Definition 2. Given a function y=f(x;,x,,...,x,), a fuzzy output Y=

f(A,, Ay, ..., A,) whose inputs are fuzzy numbers A;, A,, ..., A, in exchange
for inputs x,, x,, . . ., x,, is defined as
py(y)= sup pa(x1) Acc e Apg (x,). ®)
{xly=f(x)}

Now, a possibilistic linear system whose parameters are symmetric fuzzy
numbers A; = (a;, ¢;), is denoted by

Y=A1x1+A2x2+-"+A,,x,,=Ax (6)
where the membership function of a fuzzy parameter A; is
tafa) = L((a; — )/ c;). (7

A membership function uy(y) of a possibilistic linear system (6) is rewritten
using the extension principle in Definition 2 as follows.

Theorem 1. The membership function of a fuzzy output Y is
sy(y) = L((y — ax)/c|x]) (8
where |x| = (x|, IXal, . . ., Ix)T, @=(ay, as, ..., &) and c=(cy, Ca, . . ., Cp).
The proof is shown in [7]. Given a fuzzy parameter A; the membership

function of a fuzzy output Y can be calculated easily. A similar discussion is given
by Nahmias [8].

3. Possibilistic linear regression

To formulate possibilistic linear regression, let us consider the following
definition b €, A, where A is an L-R fuzzy number and b is a real number.

Definition 3. The containment b €, A with a threshold 4 is defined as
be,A & belA],
where
[A], = {x | ua(x) =h}. )]

We assume that deviations between the observed values and the estimated
values depend on the possibility of the system parameters. Thus, the possibility of
estimated values can be regarded as a fuzzy number.

Let us consider the following possibilistic linear system as a linear regression
model:

Y?=A3+Arxi1+"'+A:xin, i=1,2,...,N, (10)

where the input vector x; = (x;;, . . ., x;,)" and the output y, are non-fuzzy. From
relations between outputs y; and fuzzy estimated values Y}, we consider the
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Fig. 1. The concept of Min Problem.

following problem which is to determine fuzzy parameter A* when a threshold A
is given:

Vi€, YI=Af+Afxy+ -+ Arx, =A%x,. (11)

By Definition 3 and (11), our requirement is that the output data y; should be
contained in the estimated fuzzy outputs Y/ in the sense of h-level set, i.e.

vien Yy © ye[Y!],, i=1,2,...,N. (12)

In possibilistic linear regression, the problem to determine fuzzy parameter A*
is called Min Problem [7]. The concept of Min Problem is shown in Figure 1. The
output y; is included in the h-level set [Y/], of the fuzzy estimated value Y7.

The width of the estimated value Y7, i.e. ¢ |x;|, can be considered as fuzziness
based on the possibilistic linear system. The smaller c |x;| is, the better the
estimated model is. Thus, we consider the following objective function concern-
ing the sum of the widths of Y. The Min Problem is reduced to an LP problem
under (12):

N
min J(c) =2, ¢ x| (13)
a,c i=1

subject to  y; <ax; +|L"'(h)| ¢ |xil,
y; = ax; — |[L7'(h)| ¢ |x,],
c=0, i=1,2,...,N,

where J(c) is called the index of fuzziness of the Min Problem.

4. The fuzzy GMDH

The GMDH based on the principles of heuristic self-organization is developed
to solve complex problems with large dimensionality. We formulate the GMDH
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by the possibilistic model, which is called the fuzzy GMDH. We assume that
input—output relations (x, y) can be specified by the following polynomial whose
parameters are fuzzy numbers:

Y*= A() + 2 Aklxk;+ z Z Aklkz.xk]xk2 +---, Y€, Y* (14)
k1 ki k;
where parameters A, Ay, . . . are fuzzy numbers. As the conventional GMDH,

the model Y* is obtained by combining the following second-order possibilistic
regression models of two variables in multilayers:

Y, = Aok + Apex; + Ayex; + A (x:)? + Au(x))* + Asexix;,
k=1,2,..., i,j=1,2...,i%] (15)

This possibilistic model is called the partial description.

In the each layer procedure of the fuzzy GMDH, the estimated values
Y,...,Y,..., Y, ... become input variables of the next layer. For example,
we can obtain the following model by using input variables Y; and Y;:

Y, =Aq + ALY + ALY, + Az (Y)* + Ay (Y))* + A5, Y)Y,
s=1,2,..., ij=12...,i%] (16)

However, the estimated value Y, is vague since parameters and input variables
are fuzzy numbers, and the width of the fuzzy numbers is large for multiplication
of fuzzy numbers. Thus, we use the center values of fuzzy number Y; and Y; as
input variables, i.e. the model (15) is used.

As the conventional GMDH, we select only good partial descriptions to fit the
observed data by using the fitting index in each layer. The algorithm of the
multilayer procedure is stopped by some stopping rule with which we cannot
select best partial descriptions. Then, the estimated model Y* is the last best
partial description.

Now, let us discuss the fitting index. We propose two fitting indexes between
the estimated fuzzy value Y; and the data y,.

i) Ji=py(0), (17)
(i) Ji=clxl, i=12,...,N. (18)

The index J; means the degree to which the data is included by the estimated
value Y?*. The index J? means the width of Y;}. The higher J} and the smaller J7,
the better the estimated value is. Thus, we propose the following performance
index J which represents the goodness of fit of the partial description to the
observed data.

_Zfl:r’%__ iic
DIET b )iy HY.-"()’:‘).
If J=0, i.e. ¢|x;] =0, the estimated value Y;, j=1,2,..., N, is equal to a real

number y;.
Now, let us explain the structure of the algorithm of the fuzzy GMDH.

J

(19)
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Step 1: Choose inputs x;, i=1,2,...,N,j=1,2,..., m, that are hypothesized
to influence the output of interest y;. If necessary, normalize the observed data
(xi: .Yt) ’

Step 2: Compute the correlation coefficients between the input and output
variables for m input variables, and preselect the best n input variables by the
values of the correlation coefficients. These selected variables (x1,...,x,) are
denoted as the input variables to the first layer.

Step 3: Separate data into two sets called the ‘training data set’ (hereafter TRD)
and the ‘checking data set’ (hereafter CHD), respectively. Note that TRD is used
to estimate fuzzy parameters of partial descriptions defined in Step 4 and CHD is
used to independently evaluate the partial descriptions. Assume that the numbers
of data in TRD and CHD are N, and N, respectively.

Step 4: Form the following partial descriptions constructed by two inputs x,
and x,:

Yk = AOk + Alkxp + A2kxq + A3k(xp)2 + A4k(xq)2 + ASkxpxq;
p,a=12,...,n,p#q, k=12,...,40(n—-1). (20)

The fuzzy parameters in (20) are determined by solving the Min Problem (13).
Since the estimated value Y, is a fuzzy number, the intermediate variables in the
next layer are taken as

xe={yi | uy(y$) =1}, k=1,2,...,3n(n-1). (21)

Note that the intermediate variable is non-fuzzy, as described before.
Step 5: Calculate the following performance index J, of the partial description
using CHD:

Te= 3 elul /3 i (00, 22)

which represents the goodness of fit of the partial description of CHD and is
defined by (19).

By the index J,, select the best r intermediate variables derived from (21) and
(22). These selected x., k=1,2,...,r, become inputs at the next layer.
Calculate the threshold in this layer:

6= mkin Ji. (23)

Step 6: Go to Step 4. Repeat Step 4-6 until the threshold 6,,., in the (m + 1)-th
layer becomes larger than 6, in the m-th layer:

0m+1=min.ls>0,,,=mkin.lk, m=1,2,.... (24)

By repeatedly substituting the intermediate variables into the partial descrip-
tions in the next layer until the final layer, the estimated model Y* is obtained.
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5. Application

To explain the applicability of the algorithm of the fuzzy GMDH, we apply it
to structure identification of the amount of production of computers in Japan and
identification and prediction of water temperatures in a dam reservoir.

5.1. Identification of amount of production of computers in Japan

Table 1 shows input—output data among 1960—-1981 [9]. According to the steps
of algorithm, let us show the results of this example.

Step 1 and 2: y is an output variable giving the amount of production of
computers (in hundred mil. yen). x;, j=1,2,...,11, are input variables
preselected by computing the correlation coefficients between 20 input variables
and output variables. Input variables are obtained as follows:

x,: National income (in 10 tril. yen).

x,: Revenue (in tril. yen).

x3: Value of shipments of chemicals, petroleum and allied products (in tril.
yen).

x4: Value of shipment of iron, steel and fabricated metal products (in tril. yen).

xs: Value of shipments of machinery, exclusive electrical (in tril. yen). '

x¢: Value of shipments of electrical machinery, equipment and supplies (in tril.

yen).

Table 1. Input-output data analysed by the fuzzy GMDH

No Year y X, X, X3 X4 Xs X X3 Xg X9 X0 X3 TRD/CHD
1 1960 01 13 39 17 29 12 13 14 22 12 12 14 TRD
2 1961 02 16 47 21 37 17 17 16 26 14 15 1.6 CHD
3 1962 05 18 53 24 36 19 19 18 30 17 16 19 TRD
4 1963 1.0 21 58 28 41 20 20 20 35 19 20 24 CHD
5 1964 1.5 23 65 32 50 23 23 26 40 23 22 28 TRD
6 1965 32 26 74 34 52 22 23 30 44 28 22 34 CHD
7 1966 49 31 87 39 62 25 27 34 51 34 27 39 TRD
8 1967 87 36 103 46 76 33 36 43 6.0 40 30 4.6 CHD
9 1968 141 43 120 53 87 42 46 54 76 47 34 55 TRD
10 1969 171 50 140 63 109 54 60 62 86 57 40 6.5 CHD
11 1970 270 59 161 73 134 68 7.3 73 107 6.7 3.7 82 TRD
12 1971 31.1 6.6 187 81 130 7.0 7.5 82 120 73 53 9.1 CHD
13 1972 382 7.6 228 85 143 7.1 86 94 139 93 6.0 10.7 TRD
14 1973 428 9.2 282 105 195 94 105 114 163 124 6.6 13.2 CHD
15 1974 53.6 109 348 16.6 24.5 11.4 119 136 21.9 13.0 7.8 16.6 TRD
16 1975 49.7 12.0 39.8 18.0 21.8 10.6 10.8 149 246 151 9.6 189 CHD
17 1976 57.5 13.6 48.0 20.5 24.8 11.6 13.7 16.8 26.6 19.5 11.6 21.7 TRD
18 1977 659 149 57.1 21.4 263 12.7 151 19.1 27.6 213 12.8 18.6 CHD
19 1978 82.0 164 67.4 20.7 27.3 13.4 16.2 20.2 273 242 14.1 20.7 TRD
20 1979 100.6 17.6 77.1 24.7 31.7 15.6 18.5 21.7 263 25.7 15.5 23.3 CHD
21 1980 113.7 18.9 72.9 33.1 36.3 17.4 22.0 249 273 29.2 18.0 25.2 TRD

N
[ %]

1981 131.5 20.0 94.3 34.0 355 19.4 257 282 29.1 30.3 18.6 26.1 CHD
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x;: Value of shipments of transport equipment and precision instruments (in
tril. yen).

xg: Net domestic product of wholesale and retail trade (in tril. yen).

xo: Net domestic product of finance, insurance and real estate (in tril. yen.).

x10: Net domestic product of electricity, gas, water, transport and communica-
tion (in tril. yen).

x1,: Net domestic product of services (in tril. yen).

Step 3: We separate data into TRD and CHD as described in Table 1. Thus,
N,=11 and N,=11.

Step 4: We assume that a reference function L(x) = max(0, 1 — |x|). Thus, the
membership function of the fuzzy parameter A; is

la; — ajllc;, o5—¢<a;< a5+,

1 -
Ha(a)) = {O, otherwise. 25)
Fuzzy parameters in (20) are determined by solving the Min Problem (13) with
h=0. We obtain 55 partial descriptions Y;, ..., Yss, which is the number of

combinations of the variables.

Step 5: We set r =5 and the partial descriptions Y,, Ys;, Y5, Y35 and Y,s are
selected. The values of the index for the partial descriptions are obtained
as

Ji=18.49, Js=17.68, J3=16.43, J35=15.68, J,s=16.70.

Thus, we have
6, =min J, =15.68,
Yas = Ao+ Ayxs + Asxe + As(xs)* + Ay(xe)* + Asxsxs, (26)
Ap=(0,5.64), A,=(0,0), A,=(2.60,0),
A3;=(0.18,0), A,=(0,0), As=(0.02, 0).

Step 6: Go to Step 4. Repeat Step 4 and 5. In the second layer, we obtain

6,= min J,=15.68=6,.

s=1,2,..., 10

Thus, the algorithm of the fuzzy GMDH is stopped in the second layer. As a
result of the algorithm, the estimated model Y3s in the first layer is obtained.

Figure 2 shows the observed values and the estimated fuzzy values from 1960 to
1981. The possibility of containment of observed data in the estimated values is
shown in Table 2. Since 9 data among 11 CHD are contained by the estimated
values, except No. 18 (1977) and No. 22 (1981), a good estimated model is
obtained.

5.2. Identification and prediction of water temperature in a dam reservoir

Water temperature in dam reservoirs exerts influence on water supply,
irrigation and so on. Accordingly, the prediction of water temperature is needed
to avoid bad influences. But the fluctuation of water temperature is irregular and
vague. Thus, we obtain a structural model by using the fuzzy GMDH.
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Fig. 2. The amount of production of computers.

Figure 3 shows the data of air temperatures and water temperature in the
Daiichi Yahagi Dam in Aichi Prefecture from July 1 to August 31, 1980 [10]. We
obtain an estimated model using data from July 1 to July 31, 1980. The estimated
model is used to forecast water temperatures from August 1 to August 31, 1980.

Let us explain the algorithm of the fuzzy GMDH according to Section 4.

Step 1 and 2: Table 3 shows input—output relations. y is water temperature at
10 m depth, input variables x;,, j =1, 2, are air temperature and water tempera-
tures at 5 m depth with the time lag at day ¢, t=1, 2, . . ., 10, respectively. Input
variables in Table 3 are obtained from the correlation coefficients between the
input variables with time lag ¢ and output variables. As a result, input variables of
the air temperature with #=1, 2, 3 and 10, and the water temperature at 5m
depth with t =1, 2, 3, 4 and 5 are selected.

Step 3: We separate data into N, =20 and N, =11 as described in Table 3. N, is
about double N,, since the estimated model is more fitting for TRD then CHD.

Step 4: Assume that L(x) = max(0, 1 — |x|). Thus, the membership function of
a fuzzy parameter A; is the same as (25). Fuzzy parameters in (20) are determined
by solving Min Problem (13) with A = 0. We obtain ¢C, = 36 partial descriptions.

Step 5: We set r =5.

Step 6: Go to Step 4. Repeat Step 4 and 5. In the second layer, we obtain

0,= mln J 0.55=0,. 27

s=1,...,
As a result, we obtaln the best estimated model:
Y = Ao+ Aixp1X23+ Azxs Xy s + As(X2,2)° + AdXs 1(%2,2)°%2,3
+ Asxy 1% 2X2 3X2 5 + Ae(X2,2)*(X2,5) (28)
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Fig. 3. Air and water temperature fluctuations in the Yahagi Dam.
where

Ao=(13.46,0.3), A;=(0.37x1072,0), A,=(0.4x 1072 0),
A;=(0.26x1072,0), A,=(0.02x107%0), As=(0.03x107* 0),

Ae¢=1(0.77 %1074, 0)

X,,;: the day before (water temp. 5m),
X,,5: two days before (water temp. 5 m),
X,3: three days before (water temp. S m),
X, 5. five days before (water temp. S m).

Figure 4 shows fluctuations of observed water temperatures and estimated
fuzzy values at 10 m depth. The estimated model Y is used to forecast water
temperatures at 10 m depth from August 1 to August 31. Figure 5 shows the
prediction of water temperatures at 10 m depth. The estimated values contain 22
data among 31 CHD. Since the average width of the estimated fuzzy values is
small, 0.3 (°C), a good estimated model is obtained.
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Fig. 4. Observed water temperature and estimated fuzzy numbers at 10 m depth.
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Fig. 5. Observed water temperature and predicted temperature at 10 m depth by the fuzzy GMDH.

6. Conclusion remarks

Conventional regression analysis is constructed by using a probability model
whose deviations between the observed data and the estimated values are
supposed to be Gaussian distributions. The conventional GMDH is based on
regression analysis. On the other hand, possibilistic linear regression is con-
structed by a possibility model whose parameters are fuzzy numbers. In this
paper, the fuzzy GMDH is formulated from the view-point of possibility model.
In the algorithm of the fuzzy GMDH, the structure of the model can be
automatically found by combining possibilistic linear systems. In order to explain
the applicability of the algorithm of the fuzzy GMDH, two practical applications
are analyzed by the fuzzy GMDH. As a result, good estimated models are
obtained. Thus, the extension of possibilistic linear regression to the fuzzy
GMDH can be said to be more efficient in the application aspect than in the
theoretical aspect. This is the first paper dealing with the fuzzy GMDH, which
will be a powerful analysis method for fuzzy phenomena in the near future.
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