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Rat hippocampal neurons reorganized into complex
networks in a culture dish with 64 planar micro-
electrodes and the electrical activity of neurons were
recorded from individual sites. Multi-site recording
system for extracellular action potentials was used for
recording the activity of living neuronal networks and
for applying input from the outer world to the net-
work. The living neuronal network was able to dis-
tinguish among patterns of evoked action potentials
based on different input, suggesting that the living
neuronal network can express several pattern inde-
pendently, meaning that it has fundamental mecha-
nisms for intelligent information processing. We are
developing a “biomodeling system,” in which a living
neuronal network is connected to a moving robot with
premised control rules corresponding to a genetically
provided interface of neuronal networks to peripheral
systems. Premised rules are described in fuzzy logic
and the robot can generate instinctive behavior, avoid-
ing collision. Sensor input from the robot body was
sent to a neuronal network, and the robot moved based
on commands from the living neuronal network. This
is a good modeling system to analyze interaction be-
tween biological information processing and electrical
devices.
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electrode array (MED), fuzzy logic, moving robot

1. Introduction

Dissociated neurons in a culture dish elongate neurites
and form mutual synaptic connections. Frequent spon-
taneous electrical activity is observed throughout culture
period, even though their environmental is rather artifi-
cial. Complex networks of living neurons thus appear to
conduct certain information processing. Especially, liv-
ing neuronal networks may have a feature that they build
and adjust themselves to their environment [1]. Dissoci-
ated neurons in a multi-electrode array are fully useful for
clarifying the interaction between network dynamics and

Fig. 1. Example of cultured living neuronal net-
work (E17D10). The white bar indicates 50 µm. The MED
probe has 64 planar microelectrodes (white arrowheads) ar-
ranged in an 8 × 8 grid on the culture dish. Neurons were
cultured at high density and built a complex network on the
culture dish. Example of neuron is indicated (white arrow).

input from outer world.
Neurons reconstructed of complex networks (Fig. 1)

and spontaneous spikes were frequently observed from
14 to 20 days in vitro (DIV) [2]. These spikes were ac-
tion potentials spontaneously evoked by presynaptic neu-
rons without external input from the outer world (Fig. 2).
We have already shown in previous papers that long-
lasting synaptic potentiation of spontaneous synaptic cur-
rents (SSCs) was induced by a Mg2+-free condition in
dissociated neuronal networks [3, 4]. Our results suggest
a hypothesis that synaptic plasticity [5] modifies internal
states organized by dynamic cell assemblies [6] in living
neuronal networks. Indeed, such stable states were re-
ported in rat hippocampal CA3 slices, and network activ-
ity wandered about several distinct states [7]. The result
suggests that such small-scale networks have fundamental
function for brain information processing.

It is likely that these dynamics are also modified by
electrical input [8], and bidirectional (closed-loop) in-
teraction of the neuronal network, and the outer world
may generate new states containing information about the
structures of outer world. The idea of developing a sys-
tem for living neuronal networks to interact with the outer
environment via small moving robot was first reported for
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Fig. 2. Example of spontaneous spikes of action poten-
tials recorded from the living neuronal network on the MED
probe (E18D37). Traces correspond to the arrangement of
corresponding electrodes. Action potentials were sponta-
neously evoked by presynaptic neurons without external in-
put.

Hybrot (Hybrid living + robotic) by Potter’s group [9, 10].
We think that it is impossible for living neuronal networks
to generate meaningful rules autonomously without an
assessor. Fundamental systems for evaluating behavior
make “meaning” in response to outer world versus ani-
mal behavior. Instead of such evaluation systems, we pro-
vide a set of premised control rules, extending the Hybrot
concept and providing a program that generates premised
control rules for a robot to avoid collision. Premised rules
are described by fuzzy rules and generate fixed behav-
ior. We call a system with such premised control rules
a “biomodeling system”.

2. Methods

2.1. Primary Culture of Rat Hippocampal Neurons
The hippocampal region was dissected from Wistar rats

on embryonic day 17 (E17) or E18 and neurons were dis-
sociated. Procedure of primary culture of rat hippocam-
pal neurons was conventional one and was previously
described [11]. Briefly, rat hippocampal neurons were
treated with 0.175% trypsin (Invitrogen-Gibco, U.S.A.)
in Ca2+- and Mg2+-free phosphate-buffered saline (PBS-
minus, Nissui) supplemented with 10 mM glucose at
37◦C for 10 min. Then cells were dissociated by gen-
tle pipetting. Dissociated neurons were plated on a
MED probe (Alpha MED Science, Japan), having 64 pla-
nar microelectrodes in the center of the culture dish.
The MED probe was precoated overnight with 0.02%
poly ethylene-imine. Using cloning ring, neurons were
seeded in the central circular area of the MED probe
at a density of 3200 cells/mm2. The culture medium
consisted of 45% Ham’s F12, 45% Dulbecco’s modi-

fied minimum essential medium (Invitrogen-Gibco, US),
5% horse serum (Invitrogen-Gibco, US), and 5% fetal
calf serum (Invitrogen-Gibco, US), supplemented with
100 U/ml penicillin, 100 µg/ml streptomycin (Invitrogen-
Gibco, US), and 5 µg/ml insulin (Sigma-Aldrich, US).
Half of the culture medium was changed to fresh every
two days. Neurons were cultured for 60 days at 37◦C in
5% CO2/95% air at saturating humidity. All experimental
procedures were governed by Guidelines for the Care and
Use of Laboratory Animals of the AIST.

2.2. Measurement of Multiple-Site Extracellular
Potentials via Electrode Array Dish

Spontaneous extracellular action potentials [12] were
recorded in normal culture medium at 20-60 days in vitro.
Extracellular potentials were collected through 64 elec-
trodes simultaneously with the integrated MED64 sys-
tem (Alpha MED Science, Japan) at a sampling rate
of 10 kHz [12]. Experiments were conducted at room
temperature (20-25◦C). Control, such as stimulation se-
quences and sampling rates are done by MED64 con-
ductor software (Alpha MED Science, Japan). Sponta-
neous spikes of action potentials were detected automat-
ically by MEDFAUST, an analysis program developed at
our lab. The amplitude threshold-based algorithm for de-
tection was published elsewhere [13]. The threshold was
determined to be 3 times of baseline noise during the pre-
ceding 100 ms time window. Detected spikes were clas-
sified into each neuron units by amplitude versus decay
time distributions using k-means algorithms. Extra large
spikes of stimulation artifacts were omitted.

3. Electrical Stimulation of Living Neuronal
Network

3.1. Programmable Multisite Stimulation Head
Amplifier for MED64 System

We designed the programmable multisite stimulation
head amplifier for MED64 system (MED-H08). The am-
plifier included 1 channel stimulator for constant current
stimulation and a circuit to switch electrodes for stimula-
tion by extra eight-digit command input. MED-H08 en-
ables us to record evoked action potentials through 64 in-
dividual electrodes and apply stimulus input to the liv-
ing neuronal network through a selected electrode. It
also records signals through the same electrode selected
for stimulation, because the head amplifier switches the
connection of the MED probe to the recording circuit
from stimulation circuit immediately (Fig. 3). We de-
veloped “MultiStimulator” software for switching stim-
ulating electrodes, using LabVIEW (National Instrument,
US) and a multifunction data acquisition PC card (DAQ
CARD 6020, National Instrument, US) to generate con-
trol signals for switching electrodes.

Experimental sessions were authorized by the MED64
conductor and triggered by TTL signals generated by the
MultiStimulator.

Journal of Robotics and Mechatronics Vol.19 No.5, 2007 593



Kudoh, S. N. et al.

Fig. 3. System over view of multiple-site recording system for extracellular potentials. An experimental session was authorized by
the MED64 conductor on PC1 and the session was triggered by a TTL signal generated by the MultiStimulator on PC2. Stimulation
signals were generated by a built-in stimulation isolator consisting of a 64ch integrated Amplifier.

Fig. 4. Example of evoked action potentials recorded from a
living neuronal network on a MED probe (E17D19). Traces
correspond to corresponding electrodes. The arrow indicates
electrical stimulation.

3.2. Distinct Spatiotemporal Patterns Evoked by
External Input to Cultured Neuronal Network

After network reconstruction, spatiotemporal patterns
of evoked action potentials were observed (Fig. 4). Cur-
rent injection to an electrode simultaneously evoked num-
bers of action potentials at many recording sites, because
neurons on a stimulation electrode triggered action poten-
tials transmitted to other neurons via synaptic transmis-
sion. The stimulation current was injected into an elec-
trode indicated by an arrow and a particular spatiotempo-
ral pattern of action potentials was observed. Evoked ac-
tion potentials were generally observed immediately after
stimulation (early phase), and after several hundred mil-
liseconds (late phase, Fig. 5A). Action potentials in the

Fig. 5. A. Expanded trace recorded from the same cultured
network as in Fig. 4. Evoked action potentials observed im-
mediately after stimulation and after several hundred mil-
liseconds. B. Action potentials automatically detected by
MEDFAUST. Amplitude thresholds of detection were cal-
culated automatically. Time stamps of action potentials are
indicated as spike raster plots. C. Experimental scheme of
current stimulation sequences for each 64 electrodes. During
each run, the stimulation electrode was set to the electrode
having the same number as the run. Sweep duration was 1
s, the interval between sweeps was 0 s, and the interval be-
tween runs was 0 S. All spikes were recorded from the same
neurons in a culture dish (E17D19).

late phase were evoked by polysynaptic transmission and
indicated the internal state of the neuronal network trig-
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Fig. 6. A. Time stamps of evoked action potentials in each
sweep of each run. Arrows indicate the electrodes in which
notable spontaneous action potentials are observed. B. Ac-
tion potentials in sweeps 1 (upper) and 3 (lower) evoked by
current stimulation of electrode #51. C. Action potentials in
sweeps 2 (upper) and 3 (lower) evoked by current stimula-
tion of electrode #8. Stimulation electrodes are indicated by
arrowheads. All spikes were recorded from the same neu-
rons in a culture dish (E17D19).

gered by stimulation.
Recorded action potentials were automatically detected

by MEDFAUST and spike raster plots of a whole elec-
trode array were generated by time stamps of action po-
tentials (Fig. 5B). To elucidate whether a living neu-
ronal network could distinguish among several patterns
retrieved by input through individual electrodes, we ap-
plied current stimulation sequentially to each 64 elec-
trodes. Using a programmable multisite stimulator, we
recorded 5 sweeps of electrical activity evoked by cur-
rent injection into a selected electrode. After 5 sweeps
of recording, the stimulator changes from one stimulation
electrode to another one and conducts the next 5 sweeps
recordings (next “run”). During each run, the stimula-
tion electrode was set to the electrode having the same
ID number as the run number. Sweep duration was 1S,
the interval between sweeps was 0 s, and the interval be-
tween runs was 0 s (Fig. 5C). Fig. 6A shows time stamps
of evoked action potentials for each sweep of each run.
In some electrodes, notable spontaneous action potentials
were observed (e.g. the arrow in Fig. 6A). Evoked ac-

Fig. 7. A. Maximum number of action potentials of all time
windows in all sweeps in each run. All spikes were recorded
from the same neurons in a culture dish (E17D19). We gen-
erated a rate histogram of the number of action potentials in
all sweeps per each run with 100 ms time windows. Boxes
indicated the maximum number of events in a time window
per run. White indicates the maximum number of events in
all time windows in the dataset and black the minimum num-
ber of events. The maximum number of events was 31 and
the minimum 3. During each run, the stimulation electrode
was set to the electrode having the same ID number as the
run number, (i.e., the stimulation electrode was #1 during
run1). B. Latency of evoked action potentials. Boxes indi-
cate data at the same position in panel A. Colors indicate the
time window start time including the maximum number of
events. White indicates a 0–100 mS time window and black
1900–2000 mS.

tion potentials were masked by this spontaneous activity,
elicited over the entire recording time. Fig. 6B and C
show action potentials evoked by current stimulation of
different electrodes. Spatio-temporal patterns of evoked
action potentials were not same in detail in stimulation of
the same electrodes due to spontaneous activity or differ-
ent internal states of neurons, but the global trend in ac-
tion potential patterns evoked by stimulation of the same
electrode, while the patterns evoked by different stimu-
lations were differed greatly from each other. Fig. 7A
shows the sum of the number of action potentials in peak
time windows of overall recording time in all sweeps in
each run. It was not that a few sites were linked to a
particular stimulation site, but a single site responded to
multiple stimulations to different electrodes, suggesting
that many sites were required for discriminations of sev-
eral patterns. The variation of latency in action poten-
tials evoked by stimulation was relatively small (Fig. 7B).
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Fig. 8. Snap shots of biomodeling system and component
soft wares.

The spatiotemporal pattern of evoked activity was formed
relatively early, suggesting that it is necessary to analyze
action potentials with short time window, in order to rec-
ognize the difference in the pattern of action potentials de-
pending on synaptic delays or the number of intervenient
synaptic connections. These results indicate that the liv-
ing neuronal network can independently express several
distinct spatiotemporal patterns evoked by stimulation of
different electrodes.

4. Interaction with Outer World by Living
Neuronal Networks Interfaced by Moving
Robot

4.1. System Integration of Biomodeling System

We are developing a living brain robot system with
premised basic rules described by fuzzy logic [14, 15].
We use a Khepera II robot (K-Team) for interfacing with
a living neuronal network and the outer world and Lab-
VIEW (National instruments) for the programming lan-
guage. Khepera II is controlled via serial communication
by virtual instruments (VI) of LabVIEW and MED64 sys-
tem uses two DAQ boards of National instruments, also
controlled easily by LabVIEW. The system consists of 5
independent programs and recording system for multiple-
site extracellular potentials, and two computers (Fig. 8).

The “Brain Server” program records electrical poten-
tials and detects action potentials. “FLTD / FLBU” pro-
grams decode signals. The “Client” program controls the
robot. The “Input Com” program stimulates the neuronal
network. For the first step, we used a stimulator with
two fixed channels toggled for stimulation rather than the
multisite stimulation head amplifier to simplify the sys-
tem. Premised rules generate fixed behavior such as col-

lision avoidance. We call such a system with living neu-
ronal network, robot body and premised rules a “Biomod-
eling System” with a “top-down bio-processing” and a
“bottom-up robot-processing”. The robot has two Fuzzy
controllers, – one for controlling the robot’s actuators,
fuzzy logic in a top-down process (FLTD) in top-down
bio-processing, and another one for controlling the elec-
trical stimulation to the neuronal network, fuzzy logic in a
bottom-up Process (FLBU), in bottom-up robot process-
ing (Fig. 9A). Programs exchange processing data infor-
mation mediated by a datasocket transfer protocol (DSTP,
National Instruments) [16]. The system uses 4 datasocket
servers without buffering data, meaning there is a proba-
bility of lost data. It is the second-best policy for avoiding
increased time delay between the living neuronal network
and robot.

Brain Server, the processor for neuronal signals, re-
ceives eight inputs from the living neuronal network.
Each input is the number of action potentials detected by
eight adjacent electrodes within 50 ms time windows. In-
put Com, the stimulation controller, receives processed
output of eight IR sensors from Khepera II. The fuzzy
controller consists of 256 fuzzy rules with eight inputs.
Each input has two types of fuzzy labels– high-frequency
and low-frequency. The 256 fuzzy rules describe all clas-
sified patterns of action potentials in eight inputs. The
membership function of fuzzy rules is setup as follows:
The maximum frequency of the action potential in all
electrodes was made the maximum of the horizontal axis
of a membership function. The maximum membership
function assigned to the high-frequency label was at three
fourths of the points of maximum frequency, and the max-
imum of the membership function assigned to a low-
frequency label was at one fourth of the points of max-
imum frequency. Fuzzy rules were set up as follows: Dif-
ferences in the fuzzy number (µ) of each rule assigned to
bringing an object close to the left and to the right side of
the robot were calculated. We focused on rules with large
differences. Rules with large fuzzy numbers for objects
at the left correspond to particular patterns evoked by in-
put related to left IR sensors. In contrast, rules with large
fuzzy numbers for objects at the right side correspond to
particular patterns related to right IR sensors. Cnsequents
of rules for the left IR sensor, for example, were config-
ured so that left actuator speed was high (Fig. 10).

4.2. Collision Avoidance via Living Neuronal Net-
work

Neurons were dissociated and cultured on a dish,
abolishing any inborn, physiological connections among
them. Although self-organized structures of neuronal
connections in culture are likely to be observed in an in-
tact brain, adequate links between neuronal circuits and
the external environment were corrupted. We think that
it is impossible for a living neuronal network to au-
tonomously generate processes for meaningful informa-
tion processing without clues of some sort. Sentient be-
ings also cannot obtain algorithms without inborn basics

596 Journal of Robotics and Mechatronics Vol.19 No.5, 2007



Biomodeling System

Fig. 9. A. Biomodeling system consistis of 5 independent programs distributed on two personal computers, recording system for
multiple-site extracellular potentials. Program units exchange processing data information mediated by 4 datasocket servers, DS1 to
DS4. B. Fuzzy control of biomodeling system. The processor for neuronal signals and the stimulation controller each receives eight
inputs. The fuzzy controller consists of 256 fuzzy rules with eight inputs. Each input has two types of fuzzy labels high-frequency
and low-frequency.

Fig. 10. Fuzzy rule setup. (L) Fuzzy number of each rule
assigned to bringing an object close to the left. (R) Fuzzy
number of each rule assigned to bringing an object close to
the right. (|L-R|) Absolute differences in fuzzy numbers in
different situations.

such as emotional system, a sense of pain, etc. These ba-
sic systems offer “meaning” from the viewpoint of sur-
vival. In information processing among sentient crea-
tures, the value of behavior is assessed based on whether
it is suitable for survival. We propose here a system in

Fig. 11. Collision avoidance via a living neuronal network.
When FLTD detects a particular pattern of network activ-
ity (Activity pattern 1) evoked by electrical stimulation of a
particular electrode linked to high value of sensors on left,
the actuator speed on the left is speeded up. In the case
absence of sensors input, the robot is controlled by mean-
ingless spontaneous electrical activity and moves sponta-
neously.

which a living neuronal network is connected to robot
mediated by premised control rules. Such rules were de-
scribed in two fuzzy processors.

When fuzzy processor, “FLTD”, detects a particular
pattern of network activity evoked by electrical stimula-
tion of a particular electrode linked to the high value of
sensors on either side, the actuator speed on that side is
speeded up, i.e., input from the sensor from the robot
is processed and transmitted to the living neuronal net-
work by electrical stimulation, evoking a particular activ-
ity pattern of action potentials corresponding to the sen-
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Fig. 12. A) A miniature moving robot Khepera II connected
to a living neuronal network. B) Example of Khepera II
robot trajectory with the living neuronal network (E18D96).
The robot sometimes ignores sensor input, but it almost
avoids collision. In this experiment, we placed and moved
obstacles by hand to avoid neuronal death. Otherwise, when
ignoring sensor input the robot collided with the obstacle,
creating excessive stimulation harmful to neurons.

sor value. The system then recognizes such electrical
activity patterns by fuzzy rules and determines actuator
speed. If obstacles exist near the left, then the unit applies
electrical stimulation to electrode 1, and so on. When
the robot controller detects a particular pattern evoked
by electrical stimulation of electrode 1, the left actuator
is speeded up so the robot avoids a collision (Fig. 11).
Where sensor input is absent, spontaneous electrical activ-
ity is generated by the internal state of the living neuronal
network (Fig. 2). Spontaneous activity is classified into
particular patterns, and the robot moves spontaneously.
The response of the neuronal network to external input
is determined by a combination of both spontaneous in-
ternal states of the network and a compulsory activated
state. This is why the pattern evoked by electrical stim-
ulation of a particular electrode is not constant (Fig. 6).
In other words, the pattern is varied because it is the re-
sult of certain internal information processing of the liv-
ing neuronal network, making robot behavior rather un-
even, i.e., sometimes the robot did not change its direc-
tion despite the presence of an obstacle, just as an animal
would (Fig. 12B). Sometimes the robot ignores the input
of sensors, but it almost avoids collision. In our previous
reports, the pattern of evoked action potentials is modified

by a particular electrical pattern stimulation [17, 18]. We
are interested in whether we can observe adequate modifi-
cation in the behavior of this robot by its interaction with
the outer world.

5. Conclusions

Dissociated culture system with a multi-electrode ar-
ray is useful for elucidation of network dynamics of neu-
rons. In this paper, we integrated a living neuronal net-
work and a Khepera II robot using two types of fuzzy
logic. Into what we call a “biomodeling system” in which
“top-down bio-processing” send actuator signals to the
robot from the living neuronal network and “bottom-up
robot-processing” for electrical stimulation from robot to
the living neuronal network. The system is a good mod-
eling platform system for clarifying interaction between
living neurons and the outer world and assessing the ef-
fects of the outer environment on the activity of the living
neuronal system.
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