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Abstracts: The TAM (Topographic Attentive Mapping) network with Gabor function type in-
put layer is a biologically-motivated neural network incorporated receptive field. In this paper,

we discuss orientation selectivity using Gabor function type receptive field for TAM network.
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1 Introduction

Concerning orientation selectivity of simple cell, complex cell and hypercomplex cell in the hu-
man visual cortex, a hypercomplex cell plays important roles to detect contour orientation by slit

type field. The slit is a narrow receptive field from 0◦ to 5◦ represented by adjacent ON and OFF
regions filled, respectively, with plus and minus signs. The sixteen orientations from 0 ◦ to 337.5◦

per 22.5◦ are detected there. Plenty models imitate the visual cortex have been proposed[1]-[4],
and the receptive field models are also in [5]-[7]. Marčelja[6] defined Gabor function as a oscil-

lator which is a complex sinusoidal plane wave of some frequency and orientation. Daugman[7]
extended it to two-dimensional format. On the other hand, TAM network is a biologically-

motivated neural network[4], [8] and [9]. The TAM network is composed of three layers where
feature layer imitates the retina, category layer imitates the lateral geniculate nucleus and in

the class layer, the output is given by the name of object grouping.

In this paper, we formulate receptive field type input layer for TAM network using Gabor
function and discuss the orientation selectivity of the Gabor function type receptive field. By

the Gabor filtering, feature map in the input layer of TAM network is compound from density
values at each receptive field for the sixteen orientations. The biological motivation for Gabor

filtering to the TAM network lies in constructing like the receptive field in human visual cortex.
We formulate here the new TAM network, and show the usefulness of the TAM network through

some examples.

2 Gabor Function

Let x and y denotes axis on two-dimensions plane, respectively. The two-dimensional Gabor
function, G(x, y), is represented as follows;

G(x, y) = Ke
− 1

2
(
(x−µx)2

σ2
x

+
(y−µy)2

σ2
y

)
× sin (2πfxx cos θ + 2πfyy sin θ + φ) (1)

where, K is amplitude, (µx, µy) is the center coordinate of Gabor function, σx and σy are
standard deviations, and fx and fy are frequencies. In the case of φ = π/2, the sine form is

equal to the cosine form of Gabor function.
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Gabor filtering is a well known method to detect the contour orientations using the Fourier
transform of Gabor function. Given an image, the sixteen orientations of contour in the image

are detected. Let the horizontal and vertical scale of the input image denote as RH and RV ,
respectively. In the discrete type Gabor filtering algorithm, the contour image, C i(x, y), i =

1, 2, · · · ,M, 0 ≤ x ≤ RH , 0 ≤ y ≤ RV , for the i-th orientation is calculated by the following
convolution process between the Gabor function and the original input image.

Ci(x, y) =
RV∑

q=1

RH∑

p=1

Gi(x− p, y − q) × I(p, q) (2)

where, Gi is the Gabor function for detecting the i-th orientation, and I(p, q), 0 ≤ p ≤ RH , 0 ≤
q ≤ RV is the input image.

3 TAM Network with Gabor Function type Receptive Field

The structure of the TAM network is shown in Figure 1. The Gabor filtering process is repre-

sented in Figure 2. The Gabor filtering is incorporated in the input layer of the TAM network.
First, an image is clipped by the scale of RH pixel× RV pixel. The contour images for sixteen

orientations of the input image is next detected at each receptive field by the Gabor filtering.
The density from 0 to 255, i.e., black color is 0 and white color is 255 in the PGM format, is then

piled as the orientations of the contours. Since a receptive field is here shifting one pixel by one,
the center coordinate position of receptive field is equal to a pixel location and the number of

receptive fields is totally RH ×RV . Finally, RH ×RV density values are normalized and feature
map, fih, for the i-th feature in the TAM network is constructed as follows;

fih =

∑
{x,y|Oi(x,y)=h} Ci(x, y)
∑RV

y=1

∑RH
x=1Ci(x, y)

, h = 1, 2, · · · , L (3)

where, L = 256.
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Figure 1: TAM Network Figure 2: Gabor Filtering Process

After feature maps, fih, i = 1, 2, · · · ,M , are calculated, the output signal to the category layer,
yj, are calculated using the node’s weights, wjih.

yj =
M∏

i=1

xji =
M∏

i=1

∑L
h=1 fihwjih

1 + ρ2bji
(4)

123



where xji are activities, ρ represents the vigilance parameter and b ji are inhibitory weights.
Since the sixteen orientations are defined here as the selectivity, we set M = 16.

The output prediction, K, is calculated as follows:

K = {k|max
k

zk} = {k|max
k

N∑

j=1

yjpjk} (5)

where, zk are the output at each node of output layer and pjk are weighted connections.

Let K∗ denote the index of the “correct” supervised output class. If the network’s output

prediction K is not similar enough to K ∗, we do ρ = ρ + ρ(step) until either zK∗/zK ≥ OC or
ρ ≥ ρ(max), where OC is the maximal vigilance level. Once the subject of zK∗/zK ≥ OC is

satisfied, the feedback signal y∗j is calculated, and the learning parameters, w jih, pjk, bji, are

renewed using parameters, α, λ and b
(rate)
j [4].

The algorithm of the TAM network is represented as follows:

[Step 1] Given an image, the sixteen orientations of contours are detected by Gabor filtering.

[Step 2] The feature map, fih, is calculated from the density values of the input image.

[Step 3] The output prediction, K, is calculated.

[Step 4] If K is not similar enough to K ∗, we do ρ = ρ + ρ(step). When ρ reaches the maximal

level, one node is added to categories.

[Step 5] If zK∗/zK ≥ OC, the learning step starts. Parameters, w jih, pjk and bji, are updated.

[Step 6] Until zK∗/zK ≥ OC, let the algorithm repeat from step 1 to step 3.

[Step 7] The pruning step starts. The data set in which fsi, s = 1, 2, · · · , R is divided into
learning data and checking data. The information entropy, H(i) = −

∑N
j=1 gj

∑U
k=1Gjk log2Gjk,

is calculated using the learning data for feature selections, where g j =

∑R

s=1
xjis∑N

j=1

∑R

s=1
xjis

, Gjk =
∑

s∈ψk
γjs×pjk∑R

s=1
γjs×pjk

, γjs =
∏

i∈I∗ xjis × xjis and ψk is a set of the data of the class k.

[Step 8] The feature, i∗ = {i|max
i
H(i)}, is extracted as an important feature and we set I ∗ =

{i∗}.

[Step 9] If the condition, Gjk ≥ η, is satisfied for checking data at a category j, the link

connections between j and outputs k′, k′ = 1, 2, · · · , U, k ′ 6= k, are removed. Simultaneously,
the connections between j and features i′ 6∈ I∗, are removed, where η is a threshold.

[Step 10] If the condition, 1
R

∑R
s=1 γjs < θ, is satisfied for checking data at the category j, the

link connections between j and i, and i′ 6∈ I∗, are removed, where θ is a threshold.

[Step 11] If the condition, ϕjK =

∑
s∈ΓK

γjs×pjK∑N

j=1

∑
s∈ΓK

γjs×pjK
≥ ξ , is satisfied for checking data at K,

the link connections between K and categories, j ′, j ′ = 1, 2, · · · , N, j ′ 6= j, are removed, where
ξ is a threshold.

[Step 12] When a category has lost connections to all outputs or features, the category is removed.
Any output and feature which has been disconnected from all categories is also removed.

[Step 13] Until all features are selected at step 6, let the algorithm repeat from step 7 to step
12.
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When the algorithm is terminated, the neural network whose needless connections and nodes
are pruned is obtained. We should notice that the algorithm is a kind of fuzzy tuning methods

since the data procedure is the same as that of fuzzy logic. Thus, we can acquire fuzzy rules
from the TAM network as a knowledge representation.

4 Character Recognitions

In order to show the efficiency of the receptive field type input layer of the TAM network,

some examples are here illustrated. The alphabets are filled in the electronic pad, whose size
is 15 pixels × 15 pixels, corresponding to the input image. The normal alphabets as training
images are first filtered and translated to feature maps at the input layer. After the learning

of the TAM network, the recognition rate for the checking images is calculated. The following
three views are here pointed.

1. Concerning alphabets, “A and B”, analyzing the orientation selectivity of the input images

after Gabor filtering and estimating the recognition rate after the learning of the TAM
network.

2. Concerning alphabets, “A and B”, comparing robustness of four types of checking images.

3. Concerning alphabets, “A to Z”, estimating the recognition rate under reducing some pixels
from original alphabets.

Examples of the training images, “A”, are shown in Figure 3. The checking images are shown in
Figure 7. The contour images of sixteen orientations are shown in Figure 4, which are the left

side character ‘A’ in Figure 3. The orientation of the left-upper side indicates 0 ◦ and be moving
the right side one by one to be 22.5◦, 45◦, · · ·, 337.5◦, respectively. We set here the parameters of

Gabor function as σx = 1.99, σy = 1.92, fx = fy = 0.127, and K = 1.0. The contours according
to each orientation are clearly detected. The contour images of the orientation, 135.0 ◦, for

changing σx are shown in Figure 5. The Gabor functions are then shown in Figure 6. The value
of σx of the left side image is 0.5 and be moving the right side one by one to be 1.0, 1.5, 2.0, 2.5,

3.0, 3.5, 4.0, respectively. Other parameters except for σ x are set as σy = 1.92, fx = fy = 0.127,
and K = 1.0. The larger σx is, the more vague the contour image is. The orientation selectivity

for changing σy and the amplitude, K, were sensitive as well as σx. The frequency, fx and fy,
were not so sensible to orientation selectivity.

Next, the recognition rates of “A”, are shown in Figure 8. The larger σ x is, the lower the

recognition rate of the checking image is. The recognition rate of the training image is constantly
keeping in high. From Figure 5 and 8, we found that the contour orientation can be sharply

detected after adjusted the optimal value of σx at relatively small region. That is why the
narrow Gabor function can detect sharply the contour orientation since the value of σx means

the width of Gabor function. On the other hand, the large σx can detect the orientations of the
whole image, but the contour becomes obscure.

The robustness of the TAM network is estimated using four types of the checking images, “A

and B”. Figure 9 shows the recognition rates for four types of checking images, ‘A’, which are
shifting characters, rotations of characters, adding noise to characters, and reducing pixels in

characters as divided in Figure 7. The recognition rates of shifting and rotation of characters
among four types are almost higher than 70.0%. The larger σ x is, the lower the recognition rate

of characters added noise is.

In order to discuss the usefulness of TAM network, the recoginition rates of “A to Z” are

respectively compared under reducing 20% pixels, 30% pixels and no reducing from original
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Figure 3: Training Image of ‘A’

Figure 4: Image after Gabor Filtering

Figure 5: Contours of Input Images

Figure 6: Gabor Functions Figure 7: Checking Image of ‘A’

characters. Figure 10 shows the result of recognition rate representing the two-dimensional
plane of both of reducing 20% pixels and 30% pixels. The recognition rates are the average

values of 15 different types of patterns under reducing pixels for the same character, and the
experiments at each type of pattern are conducted 30 times under changing the order of training
data. The average recognition rate of reducing 20% pixels is 26.6% and 12.8% for reducing 30%

pixels comparing with 69.7% for no reducing pixels. The alphabets, ‘I’, ‘J’, ‘K’, ‘L’, ‘T’, ‘Y’
and ‘Z’, are relatively robust for reducing pixels since there are no similar characters and they

are drawn with a few strokes. Examples of reducing 30% pixels are shown in Figure 11. The
alphabets, ‘C’, ‘G’, ‘O’, ‘Q’ ‘N’, ‘M’, ‘H’, ‘B’, ‘P’ and ‘R’ are weak of robustness since ‘C’, ’G’,

’O’ and ‘Q’ are similar each other, ‘N’, ‘M’ and ‘H’ are also similar each other, and ‘P’ and ‘B’
are similar to ‘R’, as shown in Figure 11. The recognition rates of the alphabets, ‘C’, ‘S’, ‘V’ and

‘X’ are depending to the type of reducing pixels since they are including the important pixels
inside for recognize itself. Examples are also shown in Figure 11.
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Figure 10: RR of Alphabets under Reducing Pixels
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Figure 11: Examples of Reducing 30% Pixels

5 Conclusions

We formulated here the TAM network with Gabor function type receptive field and discuss

its orientation selectivity. This research is partially supported by the Ministry of Education,
Culture, Sports, Science and Technology of Japan under Grant-in-Aid for Scientific Research

number 14580433.
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