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Abstract

The TAM Network (Topographic Attentive Mapping
Network) based on a biologically-motivated neural net-
work model is an especially effective model. When the
network makes an incorrect output prediction, the atten-
tional feedback circuit modulates the learning rates and
adds a node to the category layer in order to improve the
network’s prediction accuracy. In this paper, a pruning
method for reducing the number of category and feature
nodes is formulated. We discuss here the formulation and
show its usefulness through some examples.

1 Introduction

In the human visual system, an image on retina en-
ters to the lateral geniculate nucleus(LGN) through rod
cells and pyramidal cells, and is sent to the primary vi-
sual cortex, V1, and V2. In the V1, the contour, color
and texture of the image are detected, and the contour
direction is recognized. The information is divided into
two groups whose paths are for the temporal lobe and
the vertex lobe[l]. The models based on the visual sys-
tem are BCS|[2], FCS[2], Neocognitron[3], Recurrent V1-
V2 model[4], ARTMAP[5], fuzzy ARTMAP[6], Gaussian
ARTMAP(7] and TAM]8].

The topographic attentive mapping (TAM) network
is especially a useful model, which provides resonance
learning and vigilance mechanism inside. The TAM net-
work has three layers constructed by feature, category
and class layers. The feature layer is constructed to im-
itate the retina, and the feature node has a receptive
field. The category layer imitates the LGN. The super-
vised output are given to the class layer imitated the V1.
If there is the error between the supervised output and
the output of TAM network, the “attention” is invoked
and the vigilance parameter is raising. When the error is
enough to be small, the learning step starts. The TAM
network has a powerful performance. However, the incor-
rectness by overlearing and/or overfitting might occur for
checking data since the nodes at the category layer are

only added.

In this paper, a pruning method of the TAM network
are proposed, and fuzzy rules are extracted from the net-
work structure. The plenty of pruning methods have
been proposed[9], e.g., the method added terms to the
objective function and the method which estimates the
sensitivity of the error function. In this paper, an infor-
mation entropy[10][11] for estimating the strength of the
link connections is formulated, and three pruning rules
are defined in order to decide nodes have to be pruned
. If the weak connections are existed, the link connec-
tions are removed, and fuzzy rules are acquired from the
network since the data procedure of the TAM network is
similar to fuzzy logic. We discuss here the formulation
of the pruning algorithm and show its usefulness through
some examples.

2 TAM Network

The structure of TAM Network is shown in Figure 1.
When feature maps, f;, are given, the basis nodes are
activated by the match between the activity distribution
in a feature map, f;n, and the distribution of the node’s
weights, w;;, and outputs to output nodes, y;, are cal-
culated as follows:
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where, p represents vigilance parameter and b;; are in-
hibitory weights.

The class prediction, K, is the index of the maximally
activated output node:
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Figure 1: TAM Network

where, pjr are weighted connections which represent the
probability of each output given the category.

Let K* denote the index of the “correct” supervised
output class. If the network’s output prediction K is not
similar enough to the supervised output K*, the “atten-
tion” is invoked and the p is raised until either the fol-
lowing subject is satisfied or until the maximal vigilance
level, OC, is reached. When the p reached the maximal
level, one node is added to categories.

If zg-/zKk < OC then repeat
(a) p=p+ p(Step) (5)
(b) equation (1)— (4)

until either zg«/zxg > OC or p > plmaz)

Once the subject of zgx«/zx > OC is satisfied, the
feedback signal y; is calculated and the process moves to
learning step.

zp = 1if k= K", z;=0 otherwise (6)
M U .
y; — Hz:l Lji Zk:l “kPjk (7)
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The learning parameters, wjn, pjk, bji, are obtained
as follows:

Anj = ayj(l—ny) (8)
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t
where, o, A and b;m ©) are parameters.

Whenever one datum put into the TAM network, the
learning step is invoked and parameters are adjusted.
The learning process is terminated when some epochs
are achieved.

3 Pruning Algorithm

When the data set, D, in which we have the data,
fsi, s = 1,2,--- R with the class k, are given, all data,
R, are divided into two group, i.e., learning data for
learning the parameters and checking data for estimating
the result.

The information entropy, H(i), is calculated for esti-
mating the significance of feature maps, and all of fea-
tures are lined in order of value by H (7).

N U
H(l) = —Zngij10g2 ij (14)
=1 k=1
Yo Tjis
9i = SN —m (15)
D=1 2os—1 Tjis
. X p.
ij _ Zs;% Vjs ik (16)
23:1 Yjs X Djk
Yis = H Tjis X Tjis (17)

icl*

where, 1y, is a set of the data with the class k£ and I* is
a set of features chosen by H (7).
The following feature i* is extracted.

i* = {i|max H (%)} (18)
K3
In order to estimate the strength of link connections,
the following three ruls are defined.

[Pruning Rule 1]

If the following condition is satisfied for checking data
at each category j, the link connections between the cat-
egory j and classes, k', k' = 1,2,---,U, k' # k, are
removed. Simultaneously, the connections between the

category j and features, i’ &€ I'*, are removed.
ij >n (19)

where, 1 is a threshold. We should notice the following
features.
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[Feature 1]
Even if the feature, i, which satisfies Zsewk Tjins >

s 1S selected at the next step, the equation
sy VI P q
(19) is also satisfied at that step.

[Pruning Rule 2]

If the following condition is satisfied for checking data
at each category j, the link connections between the cat-
egory j and features, ¢ and ¢ ¢ I*, are removed.

| R
= > s <0 (20)
s=1
where, 0 is a threshold.

[Feature 2]
After a category j is satisfied the equation (20) at once,
the condition at the category is satisfied at the next step.

Now, we define the following ¢;x which means the
cumulative degree of activation value of the data with
the K = K* class at the j*" category in all of categories.

ZSEFK Vis X PjK

N
Zj:l Dsery Vis X PiK

PiK = (21)
where, T = {s| K = K*, K = maxy, Zjvzl YiDijk}-

We can line all of categories in order of their impor-
tance by ;i at the class k.

[Pruning Rule 3]

If the following condition is satisfied for checking data
at the class K, the link connections between the class K
and categories, 7/, j/ =1,2,---, N, j' # j, are removed.

ik > § (22)
where, £ is a threshold.

[Feature 3]

In order to the maintain correctness at output nodes,

we recommend to set the threshold £ to the following
value.

N
§ > max ZSGFK Z]:l p.]k

23)
N (
FEK Y sers 2j=1YisPik

The pruning of nodes and link connections is achieved
according to the following algorithm.

[Step 1] For any feature 7, calculate the following entropy
H (i) using checking data.

N U
H(i) = —Zngijlngij (24)
j=1 k=1
R
—1 Ljis
P DK (25)

N R
> j=1 251 Tjis
jis X Djk
Gy = Zs;wk Vjs X Pj (26)
Zs:l ,Y]S X pjk

H Tjis X Tjis (27)

iel*

Vis =

where, I* is a set of ¢* in the Step 2.
[Step 2] Select the most significant feature, i*, which has
i* = {i|max H(i)}. (28)
2

[step 3] If the following condition is satisfied for checking
data by the first pruning rule, the link connec-
tions between the category j and classes K # k
are removed. The link connections between the
category j and features i’ € I* are also removed.

ij >n (29)

[Step 4] If the following condition is satisfied for checking
data by the second pruning rule, the link connec-
tions between the category j and features ¢ and
i/ € I* are removed.

1 R
= > g < (30)
s=1

[Step 5] If the following condition is satisfied for checking
data by the third pruning rule, the link connec-
tions between the class k and categories j/ # j
are removed.

Yk > & (31)

[Step 6] A category has lost connections to all classes or
features is removed. Any class and feature has
been disconnected from all categories are also re-
moves.

[Step 7] Until all features are selected at step 2, let the
algorithm repeat from step 1 to step 6.

When the algorithm is terminated, the optimum neu-

ral network pruned needless connections and nodes is ob-
tained. We should notice that the algorithm is a kind of
fuzzy tuning methods which adjust the number of fea-
tures, classes and fuzzy rules since the data procedure is
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the same to the fuzzy logic.
4 Examples
4.1 Pattern Problem

We discuss here the availability of the pruning mech-
anism of the TAM network when the learning data in
Figure 2 and Figure 3 are given.

X2 [ X2

ing using checking data is compared with the TAM net-
work before pruning. Tables 1 and 2 summarize the per-
formance of the TAM network after pruning three times,
which provide correctness and the number of nodes (in
the feature-category-output layers). The correctness and
the numbers of node in the TAM network before prun-
ing are respectively 82.2% and 2-4-2 for Figure 2, and be
71.7% and 2-10-2 for Figure 3.

° ° ® o O Table 1: Results of Checking Data 1
o [ ] @)
) ) o g
° L
. e o e ®0 0 n 0 0.1 0.4 0.8
o ¢ o 0.05 0.0 | 0-0-2 0.0 | 0-0-2 0.0 | 0-0-2
o o . ¢ © 0.005 | 0.005 | 73.3 | 1-2-2 97.8 | 1-22 75.5 | 1-22
‘ ‘ . Q © 0.0005 || 91.1 | 1-3.7-2 || 84.4 | 1-3.3-2 || 86.7 | 1-4-2
Xl x 0.05 0.0 | 0-0-2 0.0 | 0-0-2 0.0 | 0-0-2
Figure 2: Learning Data 1 Figure 3: Learning Data 2 0.2 0.005 73.3 | 1-2-2 95.5 | 122 75.5 | 1-2-2
"checklnlg,data" * 0.0005 93.3 1-3.7-2 88.9 1-3.3-2 88.9 1-4-2
"class-1" a
s, 0.05 0.0 | 0-0-2 0.0 | 0-0-2 0.0 | 0-0-2
: 10 0.5 0.005 73.3 | 1-2-2 97.8 | 1-2-2 0.76 | 1-2-2
N * 0.0005 || 91.1 | 1-3.7-2 || 84.4 | 1-3.3-2 || 86.7 | 1-4-2
L 18
L * * * 16
r LR S 4 14 Table 2: Results of Checking Data 2
f, 2533885332055 22338542 ¢
S*SSESSSESSSESS*SESSSD n 0 0.1 0.4 0.8
0 2 4 6 8 10 0.05 0.0 | 0-0-2 0.0 | 0-0-2 0.0 | 0-0-2
oneckng etz 0.005 | 0.005 63.3 | 1-9.3-2 || 58.3 | 1-9.7-2 || 58.3 | 1-9.7-2
Figure 4: an xetwork bgg:ggg; ° 0.0005 || 71.7 | 2-10-2 || 71.7 | 2-10-2 || 7T1.7 | 2-10-2
, oundary 0.05 0.0 | 0-0-2 0.0 | 0-0-2 0.0 | 0-0-2
« 0.2 0.005 63.3 | 1-9.32 || 56.7 | 1-9.7-2 || 56.7 | 1-9.7-2
* 18 0.0005 || 71.7 | 2-10-2 71.7 | 2-10-2 71.7 | 2-10-2
. . * x e 0.05 0.0 | 0-0-2 0.0 | 0-0-2 0.0 | 0-0-2
“ . 0.5 0.005 63.3 | 1-9.3-2 || 58.3 | 1-9.7-2 || 58.3 | 1-9.7-2
e L 0.0005 || 71.7 | 2-10-2 || 71.7 | 2-10-2 || 71.7 | 2-10-2
5553388533005 22338542
5955008 oaoans 0 Figure 4 shows the checking data and an output of
: ! ° : w the TAM network for Figure 2. Figure 5 also shows the
same checking data and an output of TAM network after
Figure 5: Tam Network after Pruning pruning as n = 0.005, 6 = 0.005, and £ = 0.4. Figure

The parameters for learning are set as follows:

epoch = 10 category init = 0

L = 10 rho init = 0.0
ocC = 0.8 rho step = 0.1
« = 0.0000001 rho max = 100.0
A 0.33 bt 0.01.

The correctness for the learning data of Figure 2 is ob-
tained as 97.8% and for the learning data of Figure 3 as
81.7%. The correctness of the TAM network after prun-

6 shows the correct rate of the learning data and the
checking data for the TAM network after pruning. The
TAM network structure is shown in Figure 7. In the
Figure 7, three fuzzy rules are extracted and the feature
f1 is removed.

The following three fuzzy rules are described by the
TAM networks.

T if fQ is W32 then KQ = P32 (0624)
ro: if foiswss then Kj =ps (0.803) (32)
rg: if foiswis then Ky =pg (0.197)
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Figure 6: Correct Rate

Figure 7: TAM Network after Pruning
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4.2 Aperture Problem

We discuss here the necessity of feedback mechanism
of the TAM network. The aperture problem is a kind of
the visual experiment, where one circle aperture is first
displayed and a linear line is next moving to a direction
inside the aperture. While the line of the first circle is
moving, other two circles appear at both sides of the first
circle appear, and the lines in the second circles are mov-
ing for the different direction from the first line. After
both of the circles appeared, the direction of the first line
is seemed to be changed itself for the same direction of
lines of the both sides(Figure 8).

Figure 8: Aperture Experiment

Okada[12] explained by an experiment that the per-
ception might to be tending upward according to speed
slowly of moving lines. He also discussed the necessity of
feedback mechanism in the visual system.

Figure 9 shows that the perception is tending upward
according to the displaying time. Four cases, (35,90),
(33,86), (38,96) and (40, 100), where (circle radius, dis-
tance between centers), are experimented. The subjects
of the experiment react as same as the case of Okada.
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06 0.7 08
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Figure 9: Reaction of Subjects

The reaction of subjects is expected to depend on strongly

the gap scale between apertures. The gap scale of exper-
iments in Figure 9 was 20mm, and therefore the four
perceptions might to be the same. In order to confirm
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the necessity of feedback mechanism of the TAM net-
work, let the three cases, (35,90), (33,86) and (38,96),
to be the learning data for TAM network, and (40,100)
to be the checking data. The parameters for learning are
set as follows:

epoch = 3 category init = 0

L = 10 rho init = 0.0
ocC = 0.8 rho step = 0.1
« = 0.0000001 rho max = 100.0
A = 0.33 b = 0.01

08 | A

06 d

Reauuun Graue

02 g

o
02 03 04 05 06 0.7 08 09 1 11 1.2
Display Time (ms)

Figure 10: Reaction after Learning by TAM Network

Figure 10 shows the output of TAM in the case of
(35,90). Table 3 shows the correct rate of the learn-
ing data (35,90) and the checking data (40,100) as n =
0.5, 6 = 0.005, and £ = 0.1 for pruning parameters.
To cut off the feedback mechanism in the TAM network,
we let the vigilance learning be inactive. The correct-
ness of the TAM network after pruning is slightly better
than before pruning. The correctness without feedback
mechanism is worse for checking data than with feedback
mechanism. The 104 fuzzy rules are extracted from the
TAM network with feedback mechanism after pruning.

Table 3: Results of TAM Network

TAM | Pruning TAM
with FB Learning Data | 0.8278 0.85
Checking Data | 0.578 0.65
without FB | Learning Data | 0.861 0.867
Checking Data | 0.544 0.6

5 Conclusions

We proposed here the pruning mechanism of the TAM
network for acquiring fuzzy rules, and discussed its use-
fulness and the necessity of feedback mechanism.
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