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ABSTRACT 
In this paper, we propose a learning method of fuzzy inference rules by a 

descent method. From input-output data gathered from specialists, the inference 
rules expressing the input-output relation of the data are obtained automatically 
using the proposed method. The membership functions in antecedent part and the 
real number in consequent part of inference rules are tuned by means of the 
descent method. 

The learning speed and the generalization capability of this method are higher 
than those of a conventional backpropagation type neural network. Furthermore, 
this method has a capability to express the knowledge acquired from input-output 
data in form of fuzzy inference rules. 

Some numerical examples are described to show these advantages over the 
conventional neural network, and an application of this method to a mobile robot 
that avoids a moving obstacle and its computer simulation are reported. 

1. INTRODUCTION 
In order to provide fuzzy reasoning with learning function, works are being 

carried out to combine a fuzzy reasoning and a neural network. Under these 
efforts, the neural network driven fuzzy reasoning[ 11, the self-tuning method by 
Hopfield neural network[Z] etc. had been proposed. But, these methods don’t have a 
sufficient generalization capability and a expressing capability of the acquired 
knowledge. 

W e  have already proposed a self-tuning method[3] of a simplified fuzzy 
reasoning[41[5] by a descent method[6] to solve these problems. In this paper, the 
usefulness of this self-tuning method are described in detail. 

In this self-tuning method, triangular formed membership functions of the 
antecedent part and a real number of the consequent part are assumed. The center 
value and the width of the triangular membership function and a real number of 
consequent part are tuned by means of the descent method. 

The learning speed of this method are higher than that of a conventional 
backpropagation type neural network[ 71 since only the inference rules matched 
input data are tuned. Furthermore, unlike the case of neural network, this method 
has a capability to express the knowledge acquired from input-output data in form 
of fuzzy inference rules. 

In this paper, the algorithm of the proposed method is explained first, and i ts  
high speed learning capability is explained next by referring some numerical 
examples to which it is applied. In order to demonstrate its generalization capability 
and expressing capability of acquired knowledge, an application of this method to a 
mobile robot which is capable of avoiding a moving obstacle is reported. 
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2. SIMPLIFIED FUZZY REASONING 
When the input are expressed by x l ,  xz, .., x,, and the output is expressed by 

y, the inference rule of simplified fuzzy reasoning[5] can be expressed by the 
following. 

Rule i: 
If x ,  is A ; ,  and ... and x,, is Ai,  THEN y is wi  ( i= 1, ... , n) (1)  

where i is a rule number, A 1  ,,...,Aim are membership functions of the antecedent 
part, and wi is a real number of the consequent part. 

The membership function Ai  of the antecedent part is  expressed by an isosceles 
triangle shown in Fig. 1. The parameters determining the triangle are the center 
value a ,  and the width bi j. 

The output of fuzzy reasoning y can be derived from the equations shown 
below. 

2 * Ixj-ai jI A:j(xj)  = 1 - ( j  = 1, ... ,m) 
bi j 

where p is a membership value of the antecedent part. 

+ b a j 4  

Fig. 1. Membership Function of Antecedent Part 

3. ALGORITHM OF SELF-TUNING 
The algorithm of self-tuning by a descent method is described below. 
A descent method[6] is to seek for the vector Z which minimizes an objective 

function E(Z),  where Z is a p-dimensional vector Z=(z,,z2, ... , z p )  of the tuning 
parameters. In this method, the vector which decreases the value of an objective 
function E(Z)  is expressed by ( -  b E/ b z ,  ,- 3 E/ b z2 ,  .,., - d E/ 3 z ) and the learning 
rule is expressed by the following formula. 

( i=  1, ... ,p) ( 5 )  B E(Z) z;(t+l)  = z;( t )  - K .  _____ 
ij Z; 
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where t is a number of iteration of learning and K is a constant. Altering Z 
according to this learning rule, the value of objective function E(Z) converges into 
a local minimum[61. 

In the present method, the inference rules are tuned so as to minimize the 
objective function E which is defined by the following. 

where y' is the desirable output data acquired from specialists. The objective 
function E means the inference error between the desirable output y' and the 
output of fuzzy reasoning y. 

By substituting Eqs. 3 and 4 into Eq. 6, the objective function E can be 
expressed by the following. 

n m  
X (ll Aij)*wi 

- Y')" 

i - 1  j - 1  

Since the shape of membership function Ai is defined by the center value ai and 
the width bi j ,  the objective function E consists of the tuning parameters ai j ,  b i j J  
and wi (i = 1,eeJnJ j = l,..,m). Therefore, the present method can be an application of 
the descent method by which the optimum vector Z to minimize the objective 
function E(Z) can be derived when the vector Z is defined as the follows. 

From Eq. 5, the learning rules of simplified fuzzy reasoning are expressed by Eqs. 8 
to 10. 

a E  a i j ( t t l )=a i j ( t )  - Ka*- a aij 

3 E  
a b i j  

bi j(tt1) = bi j(t)- K b  *- (9) 

Eqs. 8 to 10 show respective (tt1)th values of tuning parameters. K,, K b  and K, are 
constants. 

The gradients of the objective function (- a E/a, j ,  - E/bi , - a E/ a w i )  in Eq. 8 to 
10 can be derived from the Eqs. 2 to 4, and 6, and are shown in the following. 

i -  1 

i -  1 
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i =  1 

where sgn(z) is  a positive or negative sign of z. 

fuzzy reasoning can be expressed by Eqs. 14 to 16 shown below. 
Substituting Eqs. 11 to 13 into Eqs. 8 to 10, the learning rules of simplified 

i =  1 

i =  1 

The learning rules of Eqs. 14 to 16 are to adaptively change the tuning parameters 
for a direction to minimize the objective function E. Thus, using the learning rules 
of Eqs. 14 to 16, the tuning parameters of inference rules are optimized to minimize 
the inference error between the desirable output y r  and the output of fuzzy 
reasoning y. 

A typical iterative learning procedure is shown in the following. 
[Step 11 An initial setting of inference rules is conducted first. The initial value of 

a i ,  is so set that the domain of input x j  is divided equally. The initial value of 
width bi is set to allow overlaps of membership functions. 

[Step 21 The input-output data (x,,. ..,xm, y ' )  is inputted. 
[Step 31 Fuzzy reasoning is performed for the input data (x, ,..., x m )  by using Eqs. 2 

to 4. The membership value p of each inference rule and the output of fuzzy 
reasoning y are derived. 

[Step 41 Tuning of a real number wi of the consequent part is performed by 
substituting the output of fuzzy reasoning y, membership value p i, and output 
data y' into Eq. 16. 

[Step 51 The fuzzy reasoning conducted in [Step 31 is repeated. 
[Step 61 Tuning of the center value ai  and the width bi of membership functions of 

the antecedent part is conducted by substituting the changed real number wi  of 
the consequent part in procedure of [Step 41, the output of fuzzy reasoning y, 
membership value p 

[Step 71 The inference error D ( t )  is calculated from Eq. 17, and [Step 31 to [Step 61 
are repeated until its change D( t ) -D( t -1 )  is less than a threshold value. 

and output data y' into Eqs. 14 and 15. 

4. NUMERICAL EXAMPLE 
In order to demonstrate the validity of the proposed method, some example 

systems are identified as fuzzy inference rules. Three nonlinear systems of Eqs. 18 
to 20 shown below are taken up as examples. These systems have two input x l ,  x2 
and one output y. 

206 



System 1: 

System 2: 

System 3: 

y = ( 2 * X ~ + 4 ° X ~ 2 + o . 1 ) 2  

y = 4 ~ s i n ( ~ ~ x 1 ) + 2 ~ c o s ( a ~ x , )  

y = (3 exp (3 x )+2 exp( -4 - x, ) )-". 

The input-output data are prepared by changing the input variables (x, , xp) within 
I-1, 1 3  using random number, the output data y' is normalized within [0, 11. Twenty 
data are employed each for identification and evaluation in every system. Applying 
the present method to the input-output data for identification, the inference rules 
expressing the input-output relation of the data are constructed. In this case, 
sixteen inference rules are used. This method stops the learning when the inference 
error E' for the identification data is less than 0.02, where the inference errors E' 
are derived by Eq. 21 in the following. 

20 

E'= X ( Y q - Y ' s  I2 
9 - 1  

where q mean a number of data. 
Table 1 shows the inference errors E' for the identification data and the 

evaluation data, and the number of iteration for learning, when the learning are 
stopped. 

Table 1. Comparison with Neural Network 

Met hod 0.0198 

Network 0.0200 0.1796 25463 - 
System Neural 

Table 1 shows also the inference errors and the number of iteration for learning 
obtained by neural network using backpropagation[7] applied to the s a m e  data. In 
this case, the neural network consists of three layers including two units in the 
input layer, sixteen units in the hidden layer, one unit in the output layer. 

Table 1 shows that the inference errors attained by the present method for the 
evaluation data are less than those obtained by the neural network for all of the 
systems. This proves the higher capability of inference rules attained by this 
method to express the input-output relation, and the number of iteration for 
learning are substantially less than those obtained by neural network also. In 
another word, this means the learning executed in substantially shorter period. 
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5. APPLICATION TO OBSTACLE AVOIDANCE 
The proposed method has a generalization capability. In order to verify the 

capability, this method is also applied to a computer simulation of a moving obstacle 
avoidance. The purpose of this experiment is to let a mobile robot have a capability 
to judge the environment wherein it is placed, and to control its steering to arrive 
a t  a target point avoiding a moving obstacle. Fig. 2 shows input variables involved 
in this moving obstacle avoiding problem. 

T a r g e t  P o i  n t  

8 0  I 
7 

Fig. 2. Input Variables for Moving Obstacle Avoidance 

The input-output variables to be considered are shown below. 

Input: d,>[m] : Distance between mobile robot and obstacle. 
8 ,?[deg] 
d,Cml 
8 ,[deg] 

Output :A8 ,[deg] 

: Angle between mobile robot and obstacle. 
: Distance between mobile robot and target point. 
: Angle between mobile robot and target point. 
: Change of steering angle of mobile robot. 

Precondition shown below for this obstacle avoiding problem are assumed in 
this case, i.e., 
a)  The mobile robot never encounter plural obstacles at  a same time. 
b) Only the steering angle of robot is controlled, and the driving speed is constant. 
c )  No dynamics of mobile robot are considered. 
d )  Although the obstacle is movable, the target point is fixed. 

A computer simulation is conducted by taking the following procedure. 
1) An initial setting of inference rules is made first according to [Step 11. Five 

membership functions are provided for each of four input variables, and 625 
inference rules are provided in total. The labels of five membership functions for 
distance (dg ,  d , )  are { VERY NEAR, NEAR, MEDIUM, FAR, VERY FAR I .  The labels of 
five membership functions for angle ( 8 g ,  8 o )  are { LEFT, BACK, RIGHT, FRONT, 
LEFT 1. The domain of 8 and 8 is [-180, 1803, the domain of d, and d,  is 
normalized within [-1, 11, and the clockwise direction of steering angle 8, is 
regarded positive. The width of initial membership functions for distance (dg ,  d o )  
and angle ( 8 y ,  8 = ) are set at  180 degree and 1.0 respectively, all initial real 
number of consequent parts are set at 0.0. 
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2) An operator controls the steering angle of mobile robot by using a manual 
controller for avoiding the obstacle. The avoiding movement of mobile robot is  
taught for two movement patterns of the obstacle. A t  this time, the input values 
(d g, 8 g, do, 8 o )  and the change of steering angle (A 8 ) inputted by the operator 
are acquired as the input-output data (x,,...,x4.yr) in [Step 21. The number of 
acquired input-output data is 66. The two movements of mobile robot are shown in 
Fig. 3, which shows the robot (0)  and moving obstacle (0). 

3) Tuning of fuzzy inference rules is performed by using [Step 31--[Step 71. In this 
case, the number of iteration for learning is set at 10. 

In this simulation, 40 inference rules are tuned by this method. The tuned 
inference rules are shown in Fig. 4 wherein only five inference rules among 40 
tuned inference rules are shown. The labels of membership functions in Fig. 4 are 
the s a m e  of the labels of initial membership functions before the tuning. 

Next, letting the robot to make an automatic obstacle avoiding movement by 
using the 40 tuned inference rules. Several typical mobile robot movements for the 
moving obstacle are shown in t e r m s  of the robot tracks shown in Fig. 5. 

Figs. 5(a') and 5(b') show that results obtained when the obstacle is moved 
along previously taught moving patterns shown by Figs. 3(a) and 3(b), the mobile 
robot left tracks smoother than those which are taught. 

Figs. 5(c'), (d'), and (e') show results obtained when the obstacle is moved along 
moving patterns which are different from the taught pattern. Fig. 5(c') is a case 
when the obstacle is moved toward the robot by a steeper angle than that originally 
taught, and Fig. 5(d') shows a case when the obstacle is moved by a smoother angle 
on the contrary, and Fig. 5(e') shows a case when the obstacle is approached at a 
steeper angle from an opposite angle. 

These experiments show that the mobile robot is capable to avoid the obstacle 
without colliding even though the obstacle is moved along patterns which are 
different from the taught patterns. It can be conclude this self-tuning method has a 
high generalization capability. 

The first inference rule in Fig. 4 is understood to mean "If the target point is 
near to the mobile robot and located in front of mobile robot, the obstacle is near to 
the mobile robot and located in front of the mobile robot, Then the steering angle is 
increased by 39.9 degrees". For example, this inference rule can be applied to a 
dmarked case shown in Fig. 5(a'). The second to fifth inference ruIes in Fig. 4 
represent the characteristics of the taught movement pattern very well. 

A s  shown above, since this method has a capability to express the knowledge 
acquired from input-output data in form of inference rules, the acquired inference 
rules can be checked easily by a designer for correcting improper rules caused by 
noise contained in input-output data. Therefore, this method is, comparing with the 
neural network, advantageous in respect of the more clear representation of an 
internal structure of inference processes. 

6. CONCLUSION 
A learning method of fuzzy inference rules by the descent method is proposed. 

The membership functions in antecedent part and the real number in consequent 
part of simplified fuzzy inference rules are optimized by this method. Applications 
to some numerical examples and moving obstacle avoiding problem are reported. In 
these applications, high-speed learning capability, generalization capability and 
capability to express acquired knowledge of this method are shown. 

209 



(a)  (b) 

Fig. 3. Robot Tracks Taught by Operator 

I S E A R  L E F T  V E R Y  N E A R  L E F T  

Antecedent Part 
D i s t a n c e  to A n g l e  to Distance l o  A n g l e  to 
Target Point Target Point O b s t a c l e  O b r t a c i e  

- 1 . 0  I O  - 1 8 0  180 - 1 . 0  1 . 0  - 1 8 0  180 
S E A R  F R O N T  N E 4 R  F R O N T  

 VERY N E A R  F R O N T  F A R  B A C K  

\ A  h 
( V E R Y  N E A R  F R O N T  N E A R  B A C K  

I N E A R  F R O N T  N E A R  8 A C K  

Consequent P a r t  
Change of 

A Q  .[des] 
Sleering A n g l e  

3 9 .  9 

1 0 ,  3 

5 .  2 

- 1 6 .  0 

- 4 6 .  4 

Fig. 4. Some Optimized Inference Rules 
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