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Abstract—Various evolutionary multiobjective optimization al-
gorithms (EMOAs) have replaced or augmented the notion
of dominance with quality indicators and leveraged them in
selection operators. Recent studies show that indicator-based
EMOAs outperform traditional dominance-based EMOAs. Many
quality indicators have been proposed with the intention to cap-
ture different preferences in optimization. Therefore, indicator-
based selection operators tend to have biased selection pressures
that evolve solution candidates toward particular regions in
the objective space. This paper investigates a boosting method
that prioritizes and aggregates existing quality indicators to
create a single indicator that outperforms those existing ones.
The proposed boosting method is carried out with a training
problem in which Pareto-optimal solutions are known. It can
work with a simple training problem, and a boosted indicator
can effectively operate in parent selection and environmental
selection in order to solve harder problems. Experimental results
show that a boosted selection operator outperforms exiting ones
in optimality and diversity. It also exhibits robustness against
different characteristics in different optimization problems and
yields stable performance to solve them. Experimental results also
demonstrate that the proposed boosted indicator based evolution-
ary algorithm (BIBEA) outperforms a well-known traditional
EMOA and existing indicator-based evolutionary algorithms.

Index Terms—Evolutionary multiobjective optimization algo-
rithms, Quality indicators, Indicator-based selection, Boosting,
Boosted selection

I. INTRODUCTION

This paper proposes and evaluates new selection operators
for evolutionary algorithms to solve multiobjective optimiza-
tion problems (MOPs). In general, an MOP is formally de-
scribed as follows.

minimize F (~x) = [f1(~x), f2(~x), · · · , fn(~x)]T ∈ O
subject to ~x = [x1, x2, · · · , xm]T ∈ S

}
(1)

S denotes the decision variable space. ~x ∈ S denotes a
solution candidate that consists of m decision variables. It is
called an individual in evolutionary multiobjective optimiza-
tion algorithms (EMOAs). F : Rm → Rn consists of n real-
value objective functions, which produce the objective values
of ~x in the objective space O. The goal of an EMOA is to
find an individual(s) that minimize(s) objective values.

In MOPs, there rarely exists a single solution that is opti-
mum with respect to all objectives because objective functions

(i.e., f1(~x), · · · , fm(~x) in Equation 1) conflict with each
other. Thus, EMOAs seek the optimal trade-off individuals,
or Pareto-optimal individuals, by considering the trade-offs
among conflicting objectives. The notion of dominance plays
an important role to seek Pareto optimality in MOPs [1]. An
individual ~x ∈ S is said to dominate another individual ~y ∈ S
(denoted by ~x � ~y) iif the both of the following conditions
are hold.
• fi(~x) ≤ fi(~y) ∀ i = 1, · · · , n
• fi(~x) < fi(~y) ∃ i = 1, · · · , n
EMOAs often rank individuals based on the dominance

relationships among them and exploit their ranks in selection
operators [1]. This process is called dominance ranking.

A research trend in the design space of EMOAs is to adopt
indicator-based selection operators that augment or replace
dominance ranking with quality indicators [2]. A quality
indicator measures the goodness of each individual. Recent
research findings (e.g., [3]) show that indicator-based EMOAs
outperform traditional EMOAs that use dominance ranking.

Many quality indicators have been proposed with the in-
tention to capture different preferences in optimization [4]–
[7]. Therefore, indicator-based selection operators tend to
have biased selection pressures that evolve individuals toward
particular regions in the objective space. For example, the
hypervolume indicator favors balanced individuals that equally
balance the trade-offs among all objectives, while the weighted
hypervolume indicator favors extreme individuals that yield su-
perior performance only in a limited number of objectives [4].
An open question in this context is whether a set of existing
indicators can create a single indicator that outperforms those
existing ones.

In order to address this question, this paper investigates
a boosting method that prioritizes and aggregates quality
indicators for two types of selection operators in EMOAs:
(1) parent selection, which chooses parent individuals from
the population to reproduce offspring and (2) environmental
selection, which chooses a set of individuals used in the next
generation from the union of the current population and its
offspring. The proposed boosting method is carried out with a
training problem in which Pareto-optimal solutions are known.
It can work with a simple training problem, and a boosted
indicator can effectively operate to solve harder problems.



Experimental results show that a boosted indicator outper-
forms exiting ones in terms of optimality and diversity of indi-
viduals in the population. The boosted indicator exhibits higher
robustness than existing ones against different characteristics
in different problems and yields more stable performance
to solve a wider range of problems. Experimental results
also demonstrate that the proposed boosted indicator based
evolutionary algorithm (BIBEA) outperforms a well-known
traditional EMOA (NSGA-II [8]) and existing indicator-based
evolutionary algorithms.

II. RELATED WORK

This paper extends the authors’ prior work [9], which was
the first attempt to boost quality indicators for parent selection
in EMOAs. Compared with the prior work, this paper revises
the proposed boosting method and evaluates it with more
problems and more metrics. Moreover, this paper leverages
the proposed boosting method for environmental selection as
well as parent selection, while the prior work does for parent
selection only.

Several existing work have integrated ensemble methods,
including boosting algorithms, with evolutionary algorithms
(EAs) although they have never used ensemble methods for
selection operators in EAs. For example, boosting algorithms
have been integrated with genetic algorithms (GAs) to solve
classification problems [10], [11]. The Boosting Genetic Algo-
rithm integrates boosting with a GA to discover classification
rules [10]. The GA is used as a base classifier in which
each individual represents a classification rule. A boosting
algorithm aggregates multiple base classifiers (i.e., GAs) to
build a more accurate classifier than them.

Liu et al. integrate boosting with a GA for feature se-
lection [11]. (Feature selection aims to identify the features
that strongly contribute to classification accuracy.) The GA
evolves a set of individuals, each of which encodes a feature
selection candidate, and seeks the optimal feature selection that
minimizes classification error. A feature selection candidate
represents a set of boosted classifiers, each of which considers
a single feature to perform classification. Boosted classifiers
are constructed on a feature by feature basis.

GPBoost [12] and its variants (e.g., [13]) integrate boosting
with genetic programming (GP) to solve regression problems.
A GP algorithm is used as a base regression solver in which
each individual represents a regression solution candidate. A
boosting algorithm aggregates multiple base regression solvers
(i.e., GP algorithms) to build a more accurate regression solver
than them.

Yalabik et al., Santana et al. and Augusto et al. propose evo-
lutionary ensemble methods for classification problems [14]–
[16]. Yalabik et al. investigate a GA that seeks the optimal
permutation of base classifiers as the optimal ensemble clas-
sifier [14]. Each individual in the GA represents an ensemble
classifier that aggregates a certain set of base classifiers. The
fitness of an individual is computed based on the classification
errors of base classifiers that the individual contains.

Santana et al. follow a similar design to encode an ensemble
classifier as an individual and integrate it with a GA, an ant
colony optimization algorithm and a particle swarm optimiza-
tion algorithm for feature selection [15].

Augusto et al. use multiple instances of a GA that evolves
individuals, each of which represents a base classifier [16].
Different GA instances evolve individuals in parallel with dif-
ferent training data sets, and they periodically exchange well-
performing individuals. After their evolution process, they
aggregate their best-performing individuals as an ensemble
classifier with a boosting-like aggregation strategy.

He et al. propose a method to examine the performance of
EMOAs with an ensemble of evaluation metrics (or quality
indicators) such as hypervolume ratio, generational distance
and spacing [17]. The method is designed with double elim-
ination tournaments. In order to determine which EMOAs
outperform which EMOAs, different sets of non-dominated
individuals from different EMOAs are evaluated through those
tournaments with multiple evaluation metrics.

III. QUALITY INDICATORS

This section describes 15 representative quality indicators
that the proposed boosting method uses.

A. Hypervolume Indicator (IH )

IH measures the volume of a hypercube that an indi-
vidual dominates in the objective space [18]. The hyper-
cube is formed with the individual and the reference point
representing the highest (or worst) possible objective values
~r = (r1, r2, .., rn) where n denotes the number of objectives.
IH of an individual ~x is calculated as follows where fi(~x)
denotes the ith objective function value of ~x.

IH(~x) =

n∏
i=1

|ri − fi(~x)| (2)

IH is intended to favor balanced individuals in objective
space rather than extreme ones [18].

B. Weighted Hypervolume Indicator (IW1 to IW9)

IW is an extension to IH in that IW places different weights
on different regions in the objective space while IH places
the uniform weight on all regions [4]. IW of an individual
~x = (x1, x2, ..., xn) is computed as follows.

IW (~x) =

∫ (r1,r2,...,rn)

(x1,x2,...,xn)

w(~a)dz (3)

where w(~a) =

∑n
i=1 e

ki(ri−ai)∑n
i=1 e

ki

w(~a) denotes the weight of a point ~a = (a1, a2, ..., an)
in the objective space. It is calculated by applying a weight
distribution ~k = (k1, k2, .., kn). ki is the weight assigned to
the ith objective. Given a greater ki value, IW favors extreme
individuals that are closer to the fi axis in the objective space.
Note that IW is equal to IH when ~k = (0, 0, .., 0).



As shown in Table I, this paper considers nine variants of
IW (IW1 to IW9) based on nine different combinations of k1
and k2 values. These value combinations are determined based
on the parameter settings in [4]. Note that this paper uses a
training problem whose objective space is two dimensional.

TABLE I: 9 Variants of the Weighted Hypervolume Indicator

IW variants k1 k2 IW variants k1 k2

IW1 10 10 IW6 0 20
IW2 10 0 IW7 30 30
IW3 0 10 IW8 30 0
IW4 20 20 IW9 0 30
IW5 20 0

C. HypE Indicator (IHypE)

IHypE is also an extension to IH . This indicator places
different weights on different portions in the hypervolume
that an individual dominates. The hypervolume is divided
into multiple portions based on how many other individuals
dominate it as well. IHypE of ~x is computed as follows [5].

IHypE(~x) =

µ∑
i=1

1

i
Hi(~x) (4)

µ denotes the population size (i.e., the number of individuals
in the population). Hi(a) denotes the hypervolume that is
dominated by ~x and other (i−1) individuals in the population.
H1 is the hypervolume that ~x dominates exclusively. The
highest weight of 1 is given to H1. H2 is the hypervolume
that ~x and another individual dominate. The second highest
weight of 1

2 is given to H2. The lowest weight of 1
µ is given

to Hµ, which all individuals in the population dominate.

D. Binary ε Indicator (Iε1 and Iε2)

Iε takes two individuals (~x and ~y) and measures the distance
between them on a per-objective basis. It is computed as
follows [6].

Iε(~x, ~y) = maxi∈{1,..,n}(fi(~x)− fi(~y)) (5)

This paper considers two methods to evaluate the quality of
an individual (~x) against the other individuals in the population
P . The first method is to sum up binary indicator values.

Iε1(~x) =
∑

~y∈P\{~x}

Iε(~y, ~x) (6)

The second method amplifies the influence of dominating
individuals over dominated one.

Iε2(~x) =
∑

~y∈P\{~x}

−e−Iε(~y,~x)/l (7)

l is a scaling coefficient. l = 0.05 in this paper, which is a
recommended value in [6].

E. Binary Hypervolume Indicator (IHD1 and IHD2)

IHD takes two individuals (~x and ~y) and measures the
hypervolume dominated by ~x but not by ~y [6].

IHD(~x, ~y) =

{
H(~x)−H(~y) if ~x dominates ~y
H(~x)−H(~x) ∩H(~y) otherwise

(8)
H(~x) denotes the hypervolume that ~x dominates.
Similar to Iε+1 and Iε+2, this paper considers two variants,

IHD1 and IHD2, to evaluate the quality of an individual (~x)
against the other individuals in the population. IHD1(~x) and
IHD2(~y) are computed by replacing Iε+(~y, ~x) with IHD(~x, ~y)
in Equations 6 and 7, respectively.

IV. THE PROPOSED BOOSTING METHOD

Algorithm 1 shows the proposed boosting method, which
employs the AdaBoost algorithm [19]. It takes M indicator-
based parent selection operators S and aggregates top T
operators S∗ (T ≤ M ). This paper uses 15 tournament
selection operators that use 15 indicators described in Sec-
tion III (M = 15). T aggregated operators have their weights:
W ∗ = {α1, α2, ..., αT }.

The proposed boosting method is carried out through an
offline training with a multiobjective optimization problem
in which Pareto-optimal solutions are known. This train-
ing problem is used to generate N training populations,
{p1, p2, .., pN}, each of which contains µ individuals (Line 2).
These individuals represent randomly-chosen points in the
region that Pareto-optimal solutions dominate in the objective
space. Each training population has a weight wi (1 ≤ i ≤ N ).
Its initial value is 1/N (Line 3).

The proposed boosting method iteratively executes a loop
(Line 4 to 15) T times and selects one operator into S∗ in each
iteration. (It selects T operators into S∗ through T iterations.)
In each iteration, each of M operators selects an individual
Np times (i.e., Np individuals in total) from each training
population (Line 5). The quality of those Np individuals is
evaluated with the hypervolume ratio (HVR) metric [24]. HVR
is computed as the ratio of the hypervolume (HV ) of Np
individuals (D) to the hypervolume of Pareto-optimal solutions
in a training problem (P ∗).

HV R(D) =
HV (D)

HV (P ∗)
(9)

HV measures the union of the volumes that a given set of
individuals dominate in the objective space [18].

The selection of Np individuals is said to be successful if
HV R(D) is greater than or equal to a threshold: θ (θ < 1).
Given this condition, the selection error of each operator is
calculated as shown in Line 7. The error is adjusted with
each training population’s weight wi (1 ≤ i ≤ N ). Then,
the proposed boosting method chooses the operator s∗t that
has the lowest selection error (Lines 8 and 9), and computes
the operator’s weight (Lines 10, 11 and 12). A lower selection
error contributes to a higher weight.



Finally, each training population’s weight is adjusted as
shown in Lines 13 and 14. The weight decreases if s∗t ’s
individual selection is successful; otherwise, it increases. This
way, in subsequent loop iterations, the proposed boosting
method places higher priorities on the training populations in
which individual selection failed and favors the operators that
perform successful individual selection on those populations
(c.f. Line 7).

Algorithm 1 The Proposed Boosting Method

Input: S = {s1, s2, .., sM}, a set of M operators
Output: S∗ = {s∗1, s∗2, .., s∗T }, a set of T aggregated operators
Output: W ∗ = {α1, α2, ..., αT }, Weights of T aggregated

operators
1: S∗ = φ, W ∗ = φ
2: Generate N training populations: {p1, p2, .., pN}
3: Initialize each training population’s weight: wi(1) =

1/N, 1 ≤ i ≤ N
4: for t = 1 to T do
5: Each operator sj performs individual selection Np times

on each training population pi.
6: Calculate the weighted selection error (ej) for sj
7: ej =

∑N
i=1 wiIji where

Iji =

{
0 if sj’s selection is successful on pi
1 otherwise

8: Choose an operator s∗t such that st /∈ S∗ and
s∗t=argminsj∈S ej

9: Add s∗t to S∗

10: e∗t = the weighted selection error of s∗t
11: Calculate the weight (αt) of s∗t as αt = 1

2 log
(

1−e∗t
e∗t

)
where e∗t denotes the weighted selection error of s∗t

12: Add αt to W ∗

13: Adjust wi as wi(t+ 1) ={
wi(t)e

−αt if st’s selection is successful
wi(t)e

αt otherwise

14: Normalize wi(t+ 1) as wi(t+ 1) = wi(t+1)∑N
q=1 wq(t+1)

15: end for
16: return S∗, W ∗

V. BOOSTED INDICATOR BASED EVOLUTIONARY
ALGORITHM (BIBEA)

This section describes an EMOA, called Boosted Indicator
Based Evolutionary Algorithm (BIBEA), which leverages a
boosting method discussed in Section IV.

Algorithm 2 shows BIBEA’s algorithmic structure, which is
based on an existing indicator-based EMOA: IBEA [6]. In the
0-th generation, µ individuals are randomly generated as the
initial population (Line 2). In each generation (g), a pair of
individuals, called parents (p1 and p2), are chosen from the
current population with a boosted parent selection operator
that Algorithm 1 produces (boostedParentSelection(),
Lines 6 and 7).

With the crossover rate Pc, two parents reproduce two off-
spring with the SBX (self-adaptive simulated binary crossover)
operator [20] (Lines 9). Each offspring performs polynomial
mutation [8] with the probability Pm (Lines 10 to 15). The
boosted parent selection, crossover and mutation operators are
repeatedly executed on Pg until µ offspring are reproduced
(i.e., until |Og| = µ). The offspring (Og) are combined with
the population Pg to form Rg (|Rg| = 2µ), which is a pool
of candidates for the next-generation individuals (Line 19).

Environmental selection follows offspring reproduction.
µ individuals are selected from 2µ individuals
in Rg as the next-generation population Pg+1

(boostingDrivenEnvironmentalSelection(), Line 20).
Environmental selection performs a (µ+ µ)-elitism.

Algorithm 2 The Algorithmic Structure of BIBEA
1: g = 0
2: Pg = initializePopulation(µ)
3: while g < gmax do
4: Og = ∅
5: while |Og| < µ do do
6: p1 = boostedParentSelection(Pg)
7: p2 = boostedParentSelection(Pg)
8: if random() ≤ Pc then
9: {o1 , o2} = crossover(p1 , p2 )

10: if random() ≤ Pm then
11: o1 = mutation(o1 )
12: end if
13: if random() ≤ Pm then
14: o2 = mutation(o2 )
15: end if
16: Og = {o1 , o2} ∪ Og
17: end if
18: end while
19: Rg = Pg ∪ Og
20: Pg+1 =boostingDrivenEnvironmentalSelection(Rg)
21: g = g + 1
22: end while

A. Boosted Parent Selection

Algorithm 3 shows how the boosted parent selection op-
erator works (c.f. boostedParentSelection() in Algo-
rithm 2). It is constructed with T selection operators S∗ and
their weights W ∗, which Algorithm 1 produces. Each of T
operators first selects one individual (i.e., parent candidate)
from the population P with a v-way tournament (Line 1). In
a v-way tournament, a selection operator randomly draws v
individuals from P and chooses the best one based on a quality
indicator that the operator uses. A weight ϕi (1 ≤ i ≤ T ) is
assigned to each of selected T individuals with a prioritized
voting by T operators (Line 2). Priorities are given to indi-
viduals based on the weights of operators ({α1, α2, ..., αT }).
Finally, a boosted operator chooses one of T individuals as a
parent by deriving individual selection probability δi from ϕi
(1 ≤ i ≤ T ) (Lines 3 and 4).



Algorithm 3 Boosted Parent Selection Operator

Input: S∗ = {s∗1, s∗2, .., s∗T }, T aggregated operators
Input: W ∗ = {α1, α2, ..., αT }, Weights of T aggregated

operators
Input: P , a population of µ individuals
Output: an individual to be used as a parent for crossover

1: Each of T operators selects one individual from the popu-
lation P with a v-way tournament. In total, T individuals
are selected: {x1,x2,...,xT }

2: Calculate the weight of each individual xi as
ϕi =

∑T
t=1 αtIti

where Iti =

{
1 if st selects xi
0 otherwise

3: Calculate the selection probability of xi as
δi =

ϕi∑T
i=1 ϕi

4: Select an individual from {x1,x2,...,xT } based on δi.

B. Boosting-driven Environmental Selection

Algorithm 4 shows how the environmental selection op-
erator (boostingDrivenEnvironmentalSelection() in
Algorithm 2) works. It uses S∗ and W ∗, which Algorithm 1
produces. It first identifies a selection operator (s+) that has the
highest weight value (Line 1). Then, with the indicator (I+)
that s+ uses, µ individuals are removed from 2µ individuals
in Rg (Lines 2 to 6). Finally, the remaining µ individuals are
selected to the next-generation population (Pg+1) (Line 8).

Algorithm 4 Boosting-driven Environmental Selection Oper-
ator
Input: Rg, |Rg| = 2µ
Input: S∗ = {s∗1, s∗2, .., s∗T }, T aggregated operators
Input: W ∗ = {α1, α2, ..., αT }, Weights of T aggregated

operators
Output: Pg+1, a population of individuals to be used in the

next generation
1: s+ = argmaxsj∈S∗ αj
2: while |Rg| > µ do
3: Rank all the individuals in Rg with I+, which is the

indicator that s+ uses.
4: Select an individual d that has the worst I+ value in

Rg
5: Rg = Rg \ {d}
6: end while
7: Pg+1 = Rg
8: return Pg+1

Although environmental selection depends on what the
proposed boosting method produces, it does not use all T
operators in S∗ as parent selection does. It uses only one
operator (s+) in S∗ because it intends to minimize the degree
of randomization.

VI. EXPERIMENTAL EVALUATION

This section evaluates BIBEA as well as the proposed
boosting method. Experiments were configured as shown in
Table II and conducted with jMetal [21]. Every experimental
result is obtained with 20 independent experiments for two
dimensional problems and 10 independent experiments for
three dimensional problems.

TABLE II: Experimental Configurations

Parameter Value
M (Algorithm 1) 15

T (Algorithms 1 and 3) 8
N (Algorithm 1) 10,000

µ (Algorithms 1, 2 and 4) 100
Np (Algorithm 1) 20
θ (Algorithm 1) 0.8

gmax (Algorithm 2) 150, 200 or 500
v (Algorithm 3) 2, 3, 4 or 5
Crossover rate 0.9
Mutation rate 1/ (# of decision variables)

Table III shows the eight indicators that the proposed boost-
ing method chosen from 15 indicators in order to construct a
boosted selection opererator. Note that this evaluation study
uses M = 15 and T = 8 in Algorithms 1 and 3.

TABLE III: Weight Values of Aggregated Indicators

Indicator Weight (α) Indicator Weight (α)
Iε2 0.876 IW3 0.566
IHD2 0.692 IW6 0.536
IHypE 0.632 IH 0.440
IW0 0.597 Iε1 0.038

A. Training and Test Problems

This evaluation study uses ZDT1 as a training problem for
the proposed boosting method. ZDT1 is the simplest problem
in the ZDT family problems [22]. It has 30 decision variables1

and a convex Pareto-optimal front in a two dimensional
objective space (Figure 1).

ZDT2, ZDT3, ZDT4 and ZDT6 are used as test problems to
evaluate the proposed boosting method and BIBEA. Each of
the problems has a two dimensional objective space. ZDT2 and
ZDT3 have 30 decision variables each1. ZDT4 has 10 decision
variables1. ZDT6 has 10 decision variables1. ZDT2 and ZDT6
are essentially same as ZDT1 in terms of problem design and
complexity; however, they have concave Pareto-optimal fronts
(Figure 1). ZDT3 and ZDT4 are harder problems than ZDT1.
ZDT3 has five discontiguous Pareto-optimal fronts (Figure 1).
ZDT4 is a multi-modal problem that has a large number
of (209) local optima. Its Pareto-optimal front is similar to
ZDT1’s.

DTLZ family problems, DTLZ1, DTLZ2, DTLZ3, DTLZ4
and DTLZ7 [23], are also used as test problems. They have 7,
12, 12, 12 and 22 decision variables, respectively1. All of them
are harder problems than ZDT1. They have three dimensional

1It is the default setting in jMetal.



objective spaces (Figure 1). DTLZ1 has a continuous and
planar Pareto-optimal front. DTLZ2, DTLZ3 and DTLZ4 have
continuous and spherical Pareto-optimal fronts. DTLZ7 has
four discontiguous Pareto-optimal fronts.

B. Evaluation Metrics

This paper uses three evaluation metrics: hypervolume ratio
(HVR), inverted generational distance (IGD) and coverage
metric (C-metric). HVR is calculated as the ratio of the
hypervolume (HV ) of non-dominated individuals (D) to the
hypervolume of Pareto-optimal solutions (P ∗) [24].

HV R(D) =
HV (D)

HV (P ∗)
(10)

HV measures the union of the volumes that non-dominated
individuals dominate [18]. Thus, HVR quantifies the optimal-
ity and diversity of non-dominated individuals D. A higher
HVR indicates that non-dominated individuals are closer to the
Pareto-optimal front and more diverse in the objective space.

IGD is computed as follows where d(vi, D) is the minimum
distance from a Pareto-optimal solution vi to D [25].

IGD(D) =

|P∗|∑
i=1

d(vi, D)

|P ∗|
(11)

|P ∗| denotes the number of Pareto-otimal solutions. IGD
measures the optimality and diversity (more specifically, ex-
tent) of non-dominated individuals D. A lower IGD indicates
that non-dominated individuals are closer to the Pareto-optimal
front and their extent is wider.

For both HVR and IGD, P ∗ are taken uniformly from the
Pareto-optimal front. |P ∗| = 1,001, 1,001, 269, 1,001, 1,001,
10,000, 10,000, 4,000, 4,000 and 676 in ZDT1, ZDT2, ZDT3,
ZDT4, ZDT6, DTLZ1, DTLZ2, DTLZ3, DTLZ4 and DTLZ71.
C-metric compares two sets of non-dominated individu-

als [26]. Given non-dominated individual sets A and B,
C(A,B) measures the fraction of individuals in B that at least
one individual in A dominates:

C(A,B) =
|{b ∈ B | ∃a ∈ A : a � b}|

|B|
(12)

If C(A,B) = 1, all of B’s individuals are dominated by
at least one individual of A. If C(B,A) = 0, no individuals
in B are dominated by individuals in A. C(A,B) > C(B,A)
indicates that A contains better individuals than B.

C. Evaluation of the Proposed Boosting Method with HVR
and IGD

This section evaluates a boosted indicator that aggregates
the eight indicators listed in Table III in terms of optimality
and diversity. Table IV shows the average HVR values that
nine algorithms yield at the last generation in 10 different test
problems. The total number of generations in each experiment
(gmax in Table II) is 150 in ZDT problems, 500 in DTLZ3 and
200 in the other DTLZ problems. In Table IV, a number in

parentheses indicates a standard deviation among different ex-
periments. IB represents BIBEA that uses a boosted indicator
aggregating the eight indicators listed in Table III. (BIBEA
uses Iε2 for its environmental selection.) Each of the other
eight algorithms represents a variant of IBEA [6] that performs
parent and environmental selection with an indicator listed in
Table III. For example, IHD2 represents a variant of IBEA
that uses IHD2 for parent and environmental selection. v in
Table IV indicates the size of a tournament in parent selection.
In each test problem, 2-way to 5-way tournament selections
are examined. A bold number indicates the best result among
nine algorithms on a per-row basis.

In ZDT2, ZDT4, ZDT6, DTLZ1, DTLZ3, DTLZ4 and
DTLZ7, IB outperforms the other indicators when v = 5.
In ZDT1, ZDT3 and DTLZ2, IB and Iε2 tie when v = 5 if
HVR values are truncated to two decimal places. Table IV
demonstrates that the proposed boosting method can work
with a simple training problem (i.e., ZDT1) and IB can
effectively operate to solve harder problems. As described in
Section VI-A, many of test problems are harder problems than
ZDT1.
Iε2 works well in ZDT1, ZDT3 and DTLZ7; however, its

performance is marginal in DTLZ1 and DTLZ3. In DTLZ1,
Iε2 never yields 0.2 or higher HVR. The other seven (exist-
ing) indicators exhibit similar inconsistencies among different
problems. For example, IHD2 performs well in ZDT1 and
ZDT3 but performs poorly in ZDT4, DTLZ3 and DTLZ4. (It
never yields 0.62 or higher HVR in ZDT4.)

In contrast, IB’s HVR performance is much more consistent
among different problems. Its worst HVR is 0.84 (DTLZ7)
while Iε2’s worst is 0.09 (DTLZ1), IHD2’s is 0.44 (ZDT4)
and IHypE’s is 0.67 (DTLZ3). The worst HVR of IW0, IW3,
IW6, IH and Iε1 is 0. This shows that IB allows different
indicators to complement with each other well.

In summary, Table IV demonstrates that IB performs better
than, or equally to, existing indicators in HVR (i.e., in optimal-
ity and diversity) in all test problems and IB is more robust and
stable than existing indicators under different characteristics in
different problems.

Table V shows the average IGD values that nine algorithms
yield at the last generation in 10 different test problems. In
ZDT4, DTLZ1, DTLZ2, DTLZ3, DTLZ4 and DTLZ7, IB
outperforms the other indicators when v = 5. In ZDT 1 and
ZDT3, IB and Iε2 tie when v = 5 if HVR values are truncated
to four decimal places. In ZDT6, IB and IHD2 tie when v = 5
if HVR values are truncated to four decimal places. Similar
to the observation in Table IV, Table V demonstrates that the
proposed boosting method can work with a simple training
problem (i.e., ZDT1) and IB can effectively operate to solve
harder problems.

In Table V, IB’s IGD performance is more consistent than
the other indicators among different test problems. Its worst
IGD is 0.01 (DTLZ7) while Iε2’s worst is 0.01 (DTLZ3),
IHD2’s is 0.01 (ZDT4 and DTLZ7), IHypE’s is 0.01 (DTLZ7),
IW0’s is 0.84 (DTLZ1), IW3’s 0.65 is (DTLZ1), IW6’s is 0.88
(DTLZ1), IH ’s is 0.04 (ZDT3), and Iε1’s is 0.01 (ZDT2, ZDT3
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Fig. 1: The Pareto Front Shapes of ZDT1, ZDT2, ZDT3, DTLZ1, DTLZ3 and DTLZ7

and DTLZ7). This shows that IB allows different indicators
to complement with each other well.

In summary, similar to the observation in Table IV, Table IV
demonstrates that IB performs better than, or equally to, exist-
ing indicators in IGD (i.e., in optimality and diversity/extent)
in all test problems and IB is more robust and stable than
existing indicators under different characteristics in different
problems.

D. Evaluation of BIBEA with HVR and IGD

Tables VI and VII show the average HVR and IGD values,
respectively, which BIBEA and three other EMOAs (IBEA-
ε2, IBEA-HD2 and NSGAII) yield at the last generation in
10 different test problems. IBEA-ε2 is a variant of IBEA
that performs parent and environmental selection with Iε2,
and IBEA-HD2 is a variant of IBEA that performs parent
and environmental selection with IHD2 [6]. NSGAII is a
traditional EMOA that uses dominance ranking in its parent
and environmental selection [8]. All algorithms perform 5-
way tournament in parent selection. In Tables VI and VII, a
number in parentheses indicates a standard deviation among
different experiments. A bold number indicates the best result
among four algorithms on a per-row basis. A double star (**)
or a single star (*) is placed for an average HVR/IGD result
when the result is significantly different from BIBEA’s result
based on a single-tail t-test. A double star is placed with the
confidence level of 99% while a single star is placed with the
confidence level of 95%.

As shown in Table VI, BIBEA yields the best aver-
age HVR among four algorithms in all problems except
for ZDT1, ZDT3, DTLZ2. BIBEA outperforms IBEA-ε2 in
ZDT6, DTLZ1 and DTLZ3 with the confidence level of 99%.
It significantly outperforms IBEA-HD2 in six problems. It
significantly outperforms NSGA-II in eight problems. BIBEA
significantly outperforms all the other three algorithms in
ZDT6 and DTLZ3. In ZDT1, ZDT3 and DTLZ2, BIBEA’s

average HVR is not the best among four algorithms; however,
it is not outperformed by the other algorithms with the
significance level of 95%.

BIBEA’s IGD performance is not as good as its HVR perfor-
mance. It yields the best IGD among four algorithms in ZDT6
and DTLZ1. In ZDT6, BIBEA significantly outperforms the
other three algorithms. In DTLZ1, it significantly outperforms
IBEA-ε2 and NSGA-II. NSGA-II yields the best IGD in seven
problems.

It is noticeable that several or all algorithms yield high
standard deviation in HVR and IGD (Tables VI and VII). For
example, in Table VI, all four algorithms yield high HVR
standard deviation in DTLZ4. In Table VII, BIBEA, IBEA-
ε2 and NSGA-II yield high IGD standard deviation in ZDT4.
Therefore, this paper uses boxplots to analyze the distributions
of HVR and IGD values in the problems in which standard
deviations are high (Figure 2).

A box in each boxplot contains the middle 50% (or the
interquartile range; IQR) of individuals. The upper edge of
the box indicates the 75th percentile (the upper quartile) of
individuals, and the lower edge indicates the 25th percentile
(the lower quantile). The middle horizontal line in the box
indicates the 50th percentile (the median). The ends of a ver-
tical line, or a whisker, indicate the maximum and minimum
individuals unless outlier individuals exist. An individual is
said to be an outliner when it is not between 1.5 IQR of
the lower quartile and 1.5 IQR of the upper quartile. Outlier
individuals are shown as points outside the ends of a whisker.
Each boxplot is drawn with the individuals that an algorithm
produces at the last generation in each of experiments.

Figures 2a to 2h show the distributions of HVR and IGD
values that four algorithms yield in ZDT4, DTLZ1, DTLZ4
and DTLZ7. BIBEA yields the best or second best HVR/IGD
median values in all of these problems. It also maintains
the smallest box (IQR) in all those problems except ZDT4.
In DTLZ4 and DTLZ7, BIBEA yields lower median values



TABLE IV: Comparison of IB and Other Eight Indicators with HVR

v IB Iε2 IHD2 IHypE IW0 IW3 IW6 IH Iε1

ZDT1

2 0.99076 (0.00059) 0.99108 (0.00051) 0.99053(0.00065) 0.99019 (0.00081) 0.0112 (0.01381) 0.00882 (0.00762) 0.02979 (0.05572) 0.02286 (0.03741) 0.97119 (0.00232)
3 0.99111 (0.00057) 0.99124 (0.0005) 0.99108 (0.00052) 0.9872 (0.00133) 0.014 (0.01154) 0.02446 (0.04202) 0.00934 (0.00827) 0.00914 (0.00604) 0.97048 (0.00311)
4 0.99125 (0.00048) 0.9914 (0.00044) 0.99131 (0.00061) 0.98373 (0.003) 0.03333 (0.06476) 0.01908 (0.04225) 0.02241 (0.05115) 0.02021 (0.02265) 0.96996 (0.00293)
5 0.99124 (0.00073) 0.9914 (0.00053) 0.99124 (0.00057) 0.98007 (0.00306) 0.01118 (0.01533) 0.01331 (0.02165) 0.02871 (0.07231) 0.01737 (0.02354) 0.96703 (0.00524)

ZDT2

2 0.96048 (0.05558) 0.96861 (0.01234) 0.67788 (0.26256) 0.97276 (0.00368) 0(0) 0 (0) 0 (0) 0 (0) 0.00191 (0.00124)
3 0.97732 (0.00241) 0.97635 (0.00258) 0.80336 (0.22041) 0.96998 (0.00451) 0(0) 0 (0) 0 (0) 0 (0) 0.00119 (0.00124)
4 0.97852 (0.00167) 0.97757 (0.00224) 0.88847 (0.17961) 0.95958 (0.01163) 0(0) 0 (0) 0 (0) 0 (0) 0.00104 (0.00107)
5 0.97855 (0.00201) 0.97816 (0.00141) 0.85718 (0.22804) 0.94279 (0.02943) 0(0) 0 (0) 0 (0) 0 (0) 0.00249 (0.00369)

ZDT3

2 0.97979 (0.02658) 0.98468 (0.01757) 0.97633 (0.02599) 0.98584 (0.01706) 0.00762 (0.01091) 0.01899 (0.03018) 0.03113 (0.07114) 0.01086 (0.01417) 0.58206 (0.17689)
3 0.98922 (0.00231) 0.98923 (0.00069) 0.97772 (0.02378) 0.98843 (0.01018) 0.02199 (0.03572) 0.03807 (0.07873) 0.00869 (0.01302) 0.007 (0.00644) 0.58693 (0.15734)
4 0.98245 (0.02488) 0.98906 (0.00091) 0.98537 (0.00082) 0.98908 (0.00689) 0.01329 (0.01952) 0.01115 (0.02243) 0.0203 (0.04805) 0.01601 (0.04528) 0.59774 (0.14276)
5 0.98618 (0.01717) 0.9892 (0.00125) 0.98569 (0.00098) 0.98277 (0.02218) 0.01554 (0.03695) 0.01937 (0.04578) 0.0077 (0.00841) 0.00698 (0.0082) 0.49046 (0.1915)

ZDT4

2 0.89967 (0.03925) 0.82759 (0.09139) 0.4487 (0.27688) 0.95183 (0.03788) 0 (0) 0 (0) 0 (0) 0 (0) 0.90873 (0.06488)
3 0.94945 (0.02699) 0.89975 (0.06417) 0.61921 (0.19496) 0.94363 (0.06164) 0 (0) 0 (0) 0 (0) 0 (0) 0.91156 (0.07297)
4 0.97071 (0.01868) 0.92762 (0.03617) 0.52386 (0.25191) 0.94837 (0.03878) 0 (0) 0 (0) 0 (0) 0 (0) 0.94117 (0.01884)
5 0.96062 (0.03139) 0.93968 (0.03962) 0.59782 (0.23131) 0.93607 (0.07498) 0 (0) 0 (0) 0 (0) 0 (0) 0.93024 (0.0595)

ZDT6

2 0.89221 (0.02391) 0.89694 (0.01971) 0.86634 (0.02646) 0.90851 (0.01496) 0.01934 (0.0593) 0 (0) 0.00079 (0.00311) 0.01035 (0.04207) 0.00646 (0.00409)
3 0.93746 (0.01184) 0.93181 (0.00818) 0.93458 (0.01476) 0.94867 (0.00984) 0.00026 (0.00115) 0.02046 (0.07058) 0 (0) 0.01969 (0.08804) 0.00225 (0.00221)
4 0.96077 (0.00623) 0.94592 (0.01112) 0.95305 (0.01261) 0.96787 (0.00669) 0 (0) 0.01711 (0.07653) 0.01997 (0.08929) 0.0006 (0.00183) 0.00076 (0.00093)
5 0.97168 (0.00502) 0.95166 (0.00771) 0.96303 (0.00709) 0.97581 (0.00445) 0.00469 (0.02098) 0.01111 (0.04691) 0.00012 (0.00038) 0.00004 (0.0002) 0.00041 (0.00112)

DTLZ1

2 0.93498 (0.00348) 0.16563 (0.16349) 0.87292 (0.1565) 0.93612 (0.00366) 0 (0) 0 (0) 0 (0) 0 (0) 0.00067 (0.00213)
3 0.87669 (0.19738) 0.18356 (0.12278) 0.86789 (0.16297) 0.93523 (0.0037) 0 (0) 0 (0) 0 (0) 0 (0) 0.01453 (0.02837)
4 0.93419 (0.0039) 0.13599 (0.16671) 0.82699 (0.15773) 0.93057 (0.00657) 0 (0) 0 (0) 0 (0) 0 (0) 0.01371 (0.03418)
5 0.93482 (0.00364) 0.09898 (0.08299) 0.85456 (0.14999) 0.90112 (0.09922) 0 (0) 0 (0) 0 (0) 0 (0) 0.00233 (0.00498)

DTLZ2

2 0.89693 (0.00082) 0.89671 (0.00165) 0.8817 (0.0013) 0.89665 (0.00171) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
3 0.89708 (0.0014) 0.89722 (0.00055) 0.8815 (0.00075) 0.89561 (0.00174) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
4 0.89699 (0.00201) 0.89624 (0.00185) 0.88098 (0.00107) 0.86899 (0.01116) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
5 0.89625 (0.00135) 0.8967 (0.00087) 0.88071 (0.00115) 0.75846 (0.0847) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

DTLZ3

2 0.87846 (0.01391) 0.15156 (0.11169) 0.67875 (0.21244) 0.88077 (0.01817) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
3 0.88482 (0.01005) 0.12678 (0.09993) 0.79458 (0.13355) 0.8793 (0.00867) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
4 0.8753 (0.02285) 0.18072 (0.13898) 0.81021 (0.12525) 0.77406 (0.06568) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
5 0.87064 (0.03315) 0.13781 (0.05099) 0.81664 (0.06968) 0.67406 (0.10538) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

DTLZ4

2 0.88189 (0.20625) 0.88301 (0.20706) 0.55533 (0.3879) 0.88276 (0.20657) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
3 0.88289 (0.20683) 0.8827 (0.2069) 0.56097 (0.38541) 0.78462 (0.25305) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
4 0.88238 (0.20645) 0.88293 (0.20701) 0.61755 (0.39914) 0.83329 (0.23659) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
5 0.88277 (0.20642) 0.7853 (0.25371) 0.61014 (0.40272) 0.73481 (0.2574) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

DTLZ7

2 0.84901 (0.08944) 0.90849 (0.04448) 0.74587 (0.17607) 0.80901 (0.09467) 0 (0) 0 (0) 0 (0) 0 (0) 0.07872 (0.0021)
3 0.84607 (0.08521) 0.90558 (0.04829) 0.71182 (0.1039) 0.80016 (0.11071) 0 (0) 0 (0) 0 (0) 0 (0) 0.07913 (0.00244)
4 0.84646 (0.08547) 0.92182 (0.00907) 0.70199 (0.16297) 0.80508 (0.10569) 0 (0) 0 (0) 0 (0) 0 (0) 0.08059 (0.00152)
5 0.9176 (0.00504) 0.89312 (0.06185) 0.68389 (0.14252) 0.78243 (0.11719) 0 (0) 0 (0) 0 (0) 0 (0) 0.08049 (0.00148)

and smaller IQR values in IGD than NSGA-II (Figures 2f
and 2h) although NSGA-II yields lower IDG average values
than BIBEA (Table VII). Figures 2a to 2h demonstrate that
BIBEA achieves very low dispersion and skewness in HVR
and IGD. BIBEA yields more stable performance than the
other three algorithms.

E. Evaluation of BIBEA with C-metric

Table VIII compares BIBEA with the other three algorithms
with C-metric. The first two rows compare BIBEA and IBEA-
ε2. A bold font face is used to indicate a higher C-metric
value between C(BIBEA, IBEA-ε2) and C(IBEA-ε2, BIBEA).
C(BIBEA, IBEA-ε2) > C(IBEA-ε2, BIBEA) in six prob-
lems. This means that BIBEA outperforms IBEA-ε2 in those
six problems. In ZDT3 and DTLZ1, IBEA-ε2 outperforms
BIBEA; however, they yield very similar C-metric values. The
differences are 1.2% in ZDT3 and 0.3% in DTLZ1.

BIBEA outperforms IBEA-HD2 in five problems. IBEA-
HD2 outperforms BIBEA in DTLZ1 and DTLZ7; however,
they yield very similar C-metric values. The differences are
1.8% in DTLZ1 and 1% in DTLZ7.

BIBEA outperforms NSGA-II in all ten problems. In ZDT6
and DTLZ2, no individuals of NSGA-II cannot dominate

BIBEA individuals. A very limited number of NSGA-II indi-
viduals can dominate BIBEA individuals; for example, 0.1%
in ZDT1 and DTLZ7, 0.4% in ZDT2, 0.6% in ZDT3, 1% in
DTLZ1, and 1.7% in DTLZ3.

F. Evaluation of BIBEA in Convergence Velocity

This section evaluates the convergence velocity of four
different algorithms with HVR. Figure 3 how four algorithms
improve their HVR values as the number of function evalua-
tions grows. BIBEA improves its HVR faster than the other
three algorithms in ZDT1, ZDT2, ZDT4, ZDT6, DTLZ4,
DTLZ7. Particularly, in DTLZ4, BIBEA converge significantly
faster than other algorithms.

In DTLZ1 and DTLZ3, BIBEA’s convergence velocity is
not the best but fairly acceptable. In fact, it is only slower
than IBEAHD2 at the beginning of experiments. However, it
can converge to a higher HVR value toward the last function
evaluation in both problems.

Moreover, IBEA-ε2 encounters premature convergence in
DTLZ1, DTLZ3 and DTLZ4. IBEA-HD2 does in ZDT4,
DTLZ4 and DTLZ7. NSGAII has the same problem in
DTLZ2, DTLZ4 and DTLZ7. In contrast, BIBEA never en-
counters premature convergence. This means BIBEA’s conver-



TABLE V: Comparison of IB and Other Eight Indicators with IGD

v IB Iε2 IHD2 IHypE IW0 IW3 IW6 IH Iε1

ZDT1

2 0.00018 (0.00001) 0.00017 (0.00001) 0.00018 (0.00001) 0.0002 (0.00002) 0.02869 (0.00022) 0.02872 (0.00012) 0.02837 (0.00096) 0.02849 (0.00062) 0.00071 (0.00006)
3 0.00018 (0.00001) 0.00017 (0.00001) 0.00018 (0.00001) 0.00031 (0.00004) 0.02864 (0.00018) 0.02847 (0.00069) 0.02871 (0.00013) 0.02871 (0.00009) 0.00074 (0.00011)
4 0.00018 (0.00001) 0.00017 (0.00001) 0.00018 (0.00001) 0.00041 (0.00011) 0.02831 (0.00109) 0.02855 (0.0007) 0.02849 (0.00087) 0.02854 (0.00036) 0.00076 (0.0001)
5 0.00018 (0.00001) 0.00017 (0.00001) 0.00018 (0.00001) 0.00049 (0.00009) 0.02868 (0.00024) 0.02865 (0.00034) 0.02838 (0.00126) 0.02858 (0.00037) 0.00084 (0.00018)

ZDT2

2 0.00077 (0.00137) 0.00055 (0.0004) 0.00666 (0.0053) 0.00043 (0.00004) 0.02316 (0.00003) 0.02316 (0.00003) 0.02316 (0.00003) 0.02318 (0.00005) 0.01299 (0.00001)
3 0.00045 (0.00007) 0.00041 (0.00006) 0.00411 (0.00458) 0.00046 (0.00005) 0.02311 (0.00001) 0.02311 (0.00001) 0.02311 (0.00001) 0.02311 (0.00001) 0.013 (0.00001)
4 0.00041 (0.00004) 0.00041 (0.00006) 0.00222 (0.0038) 0.00053 (0.0001) 0.0231 (0) 0.0231 (0.00001) 0.0231 (0.00001) 0.0231 (0.00001) 0.01301 (0.00001)
5 0.00043 (0.00003) 0.00042 (0.00006) 0.00307 (0.00489) 0.00069 (0.00034) 0.0231 (0) 0.0231 (0) 0.0231 (0) 0.0231 (0) 0.01299 (0.00003)

ZDT3

2 0.00313 (0.00277) 0.00211 (0.001) 0.00375 (0.00245) 0.00215 (0.00151) 0.04307 (0.00022) 0.04283 (0.00066) 0.0425 (0.00174) 0.04301 (0.0003) 0.01304 (0.00366)
3 0.00242 (0.00166) 0.00199 (0.00076) 0.00323 (0.00138) 0.00147 (0.00017) 0.04276 (0.0008) 0.04234 (0.00189) 0.04305 (0.00027) 0.04308 (0.00013) 0.01279 (0.00336)
4 0.00202 (0.00132) 0.00201 (0.00075) 0.00327 (0.0014) 0.00152 (0.00018) 0.04295 (0.00041) 0.04299 (0.00049) 0.04277 (0.00112) 0.04286 (0.00107) 0.0127 (0.003)
5 0.00223 (0.00148) 0.00215 (0.00105) 0.00294 (0.00123) 0.00165 (0.00081) 0.04289 (0.00086) 0.0428 (0.00107) 0.04307 (0.00017) 0.04308 (0.00016) 0.01496 (0.00385)

ZDT4

2 0.0052 (0.002) 0.00739 (0.00312) 0.01845 (0.00797) 0.00189 (0.00218) 0.0346 (0.00474) 0.03386 (0.0052) 0.0347 (0.00606) 0.03377 (0.00508) 0.00167 (0.00087)
3 0.00211 (0.00182) 0.00466 (0.00352) 0.01467 (0.00518) 0.00197 (0.00334) 0.03106 (0.00266) 0.03118 (0.00363) 0.0309 (0.00268) 0.03017 (0.00196) 0.00175 (0.00129)
4 0.00103 (0.00131) 0.00309 (0.00254) 0.01678 (0.00697) 0.00186 (0.00245) 0.0297 (0.00085) 0.0298 (0.00156) 0.03031 (0.00207) 0.03089 (0.00251) 0.00126 (0.00048)
5 0.00143 (0.0021) 0.0021 (0.00238) 0.01564 (0.00633) 0.00219 (0.00397) 0.02994 (0.00201) 0.03069 (0.0027) 0.03006 (0.00198) 0.03048 (0.00231) 0.00131 (0.00082)

ZDT6

2 0.00111 (0.00027) 0.00115 (0.00025) 0.00151 (0.00035) 0.00089 (0.00016) 0.03373 (0.01507) 0.04223 (0.00083) 0.03852 (0.01065) 0.03609 (0.01297) 0.00641 (0.00007)
3 0.00058 (0.00013) 0.00069 (0.00008) 0.00066 (0.00016) 0.00043 (0.00009) 0.03588 (0.01271) 0.03604 (0.01229) 0.0411 (0.00034) 0.03984 (0.00493) 0.00662 (0.00004)
4 0.00035 (0.00006) 0.00055 (0.00013) 0.00047 (0.00013) 0.00027 (0.00004) 0.04089 (0.00024) 0.03925 (0.00691) 0.03944 (0.00612) 0.03566 (0.01254) 0.00668 (0.00002)
5 0.00025 (0.00003) 0.0005 (0.0001) 0.00037 (0.00007) 0.00022 (0.00002) 0.03894 (0.00773) 0.03384 (0.01395) 0.03725 (0.01048) 0.03899 (0.00763) 0.00671 (0.00002)

DTLZ1

2 0.00057 (0.00002) 0.00697 (0.00172) 0.00096 (0.00106) 0.00057 (0.00001) 0.84562 (0.77686) 0.65843 (0.70531) 0.88428 (0.48513) 0.0076 (0.00011) 0.00487 (0.00002)
3 0.00092 (0.00125) 0.0066 (0.00075) 0.00123 (0.00153) 0.00057 (0.00002) 0.7055 (0.43464) 0.63019 (0.52838) 0.80142 (0.41844) 0.00752 (0.00002) 0.0048 (0.0001)
4 0.00058 (0.00002) 0.00778 (0.00126) 0.00159 (0.00154) 0.00062 (0.00006) 0.56043 (0.29091) 0.49692 (0.46022) 0.40978 (0.27154) 0.00754 (0.00012) 0.00482 (0.00011)
5 0.00058 (0.00002) 0.00773 (0.00157) 0.00124 (0.00126) 0.0008 (0.00056) 0.64759 (0.67722) 0.35375 (0.29561) 0.71856 (0.5923) 0.00751 (0.00002) 0.00485 (0.00003)

DTLZ2

2 0.001 (0.00003) 0.00101 (0.00003) 0.00138 (0.00002) 0.001 (0.00005) 0.00859 (0) 0.00859 (0) 0.00859 (0) 0.00859 (0) 0.00535 (0)
3 0.001 (0.00002) 0.001 (0.00003) 0.00139 (0.00002) 0.00102 (0.00004) 0.00859 (0) 0.00859 (0) 0.00859 (0) 0.00859 (0) 0.00535 (0)
4 0.00101 (0.00003) 0.001 (0.00002) 0.00138 (0.00003) 0.00114 (0.00008) 0.00859 (0) 0.00859 (0) 0.00859 (0) 0.00859 (0) 0.00535 (0)
5 0.00101 (0.00002) 0.00102 (0.00002) 0.0014 (0.00003) 0.00179 (0.0002) 0.00859 (0) 0.00859 (0) 0.00859 (0) 0.00859 (0) 0.00535 (0)

DTLZ3

2 0.00162 (0.00162) 0.01054 (0.0029) 0.00356 (0.00218) 0.00158 (0.00005) 0.01439 (0.00005) 0.01438 (0.00003) 0.0144 (0.00002) 0.01437 (0.00002) 0.00891 (0.00003)
3 0.00158 (0.00005) 0.01065 (0.00294) 0.00261 (0.00068) 0.00161 (0.00005) 0.01437 (0.00001) 0.01439 (0.00004) 0.01438 (0.00004) 0.01437 (0.00002) 0.00891 (0.00002)
4 0.00161 (0.00006) 0.00939 (0.00339) 0.00279 (0.00132) 0.00252 (0.00046) 0.01437 (0.00001) 0.01438 (0.00002) 0.01437 (0.00002) 0.01437 (0.00002) 0.00891 (0.00001)
5 0.00169 (0.00018) 0.01075 (0.00173) 0.00257 (0.00059) 0.00325 (0.00046) 0.01439 (0.00004) 0.01439 (0.00005) 0.01438 (0.00003) 0.01437 (0.00002) 0.0089 (0.00001)

DTLZ4

2 0.00211 (0.00236) 0.00232 (0.00277) 0.00516 (0.00362) 0.00211 (0.00236) 0.01447 (0.00536) 0.01752 (0.00429) 0.01651 (0.00492) 0.00939 (0) 0.00625 (0.00084)
3 0.00213 (0.00235) 0.00232 (0.00277) 0.00516 (0.00361) 0.00319 (0.00292) 0.0165 (0.00491) 0.01854 (0.00321) 0.01854 (0.00321) 0.00939 (0) 0.00637 (0.00103)
4 0.00214 (0.00234) 0.00211 (0.00236) 0.00467 (0.00386) 0.00277 (0.00288) 0.0165 (0.00491) 0.0165 (0.00491) 0.01854 (0.00321) 0.00939 (0) 0.00601 (0.00042)
5 0.0021 (0.00236) 0.00343 (0.00317) 0.00452 (0.0037) 0.00387 (0.00309) 0.01752 (0.00429) 0.01549 (0.00525) 0.01854 (0.00321) 0.00939 (0) 0.00625 (0.00084)

DTLZ7

2 0.01053 (0.00831) 0.00441 (0.00449) 0.01402 (0.01093) 0.01407 (0.00823) 0.16264 (0.01842) 0.14682 (0.01723) 0.16529 (0.02265) 0.0377 (0) 0.01163 (0.00001)
3 0.01049 (0.00832) 0.00458 (0.0045) 0.01675 (0.00589) 0.01371 (0.00934) 0.16265 (0.01492) 0.1677 (0.02078) 0.16242 (0.01552) 0.0377 (0) 0.01163 (0.00001)
4 0.01063 (0.00822) 0.00304 (0.00019) 0.01616 (0.00925) 0.01325 (0.0088) 0.16551 (0.02734) 0.15856 (0.0208) 0.16778 (0.01719) 0.0377 (0) 0.01163 (0.00001)
5 0.00315 (0.00024) 0.00581 (0.00602) 0.01873 (0.00952) 0.01412 (0.00942) 0.17422 (0.03043) 0.16881 (0.03114) 0.16702 (0.01116) 0.0377 (0) 0.01163 (0)

TABLE VI: Comparison of BIBEA and Other Three EMOAs with HVR

BIBEA IBEA-ε2 IBEA-HD2 NSGAII
ZDT1 0.99124 (0.00073) 0.99140 (0.00053) 0.99124 (0.00057) 0.98490 (0.00137)**
ZDT2 0.97855 (0.00201) 0.97816 (0.00141) 0.85718 (0.22804)* 0.96948 (0.00330)**
ZDT3 0.98618 (0.01717) 0.98920 (0.00125) 0.98569 (0.00098) 0.99284 (0.00202)
ZDT4 0.96062 (0.03139) 0.93968 (0.03962) 0.59782 (0.23131)** 0.95103 (0.04873)*
ZDT6 0.97168 (0.00502) 0.95166 (0.00771)** 0.96303 (0.00709)** 0.93456 (0.01069)**

DTLZ1 0.93482 (0.00364) 0.09898 (0.08299)** 0.85456 (0.14999) 0.46676 (0.46002)**
DTLZ2 0.89625 (0.00135) 0.89670 (0.00087) 0.88071 (0.00115)** 0.80160 (0.01253)**
DTLZ3 0.87064 (0.03315) 0.13781 (0.05099)** 0.81664 (0.06968)* 0.76162 (0.03454)**
DTLZ4 0.88277 (0.20642) 0.78530 (0.25371) 0.61014 (0.40272) 0.80650 (0.28387)
DTLZ7 0.91760 (0.00504) 0.89312 (0.06185) 0.68389 (0.14252)** 0.84875 (0.01250)**

gence velocity is more consistent and robust than the other’s
among different problems.

VII. CONCLUSIONS

This paper proposes and evaluates a novel method that
leverages a boosting algorithm to obtain an aggregated selec-
tion operator from various existing indicator-based selection
operators. Experimental results show that a boosted selection
operator outperforms exiting ones in optimality, diversity and
convergence velocity. The proposed boosting process can work
with a simple training problem, and the boosted operator can
effectively solve harder problems. The boosted operator also

exhibits robustness against different characteristics in different
problems and yields stable performance to solve them.

Several future extensions are planned for the proposed
boosting method. First, the notion of boosted indicator-based
selection will be studied in environmental selection as well
as parent selection. (Environmental selection chooses a set of
individuals used in the next generation from the union of the
current population and its offspring.) Second, the notion of
boosted indicator-based selection will be evaluated in other
problems than ZDT and DTLZ problems.



TABLE VII: Comparison of BIBEA and Other Three EMOAs with IGD

BIBEA IBEA-ε2 IBEA-HD2 NSGAII
ZDT1 0.00018 (0.00001) 0.00017 (0.00001)** 0.00018 (0.00001) 0.00022 (0.00001)**
ZDT2 0.00043 (0.00003) 0.00042 (0.00006) 0.00307 (0.00489)* 0.00022 (0.00002)**
ZDT3 0.00223 (0.00148) 0.00215 (0.00105) 0.00294 (0.00123) 0.00074 (0.00149)**
ZDT4 0.00143 (0.0021) 0.00210 (0.00238) 0.01564 (0.00633)** 0.00109 (0.00146)
ZDT6 0.00025 (0.00003) 0.00050 (0.00010)** 0.00037 (0.00007)** 0.00068 (0.00014)**

DTLZ1 0.00058 (0.00002) 0.00773 (0.00157)** 0.00124 (0.00126) 0.00464 (0.00490)*
DTLZ2 0.00101 (0.00002) 0.00102 (0.00002)* 0.00140 (0.00003)** 0.00080 (0.00003)**
DTLZ3 0.00169 (0.00018) 0.01075 (0.00173)** 0.00257 (0.00059)** 0.00135 (0.00007)**
DTLZ4 0.00210 (0.00236) 0.00343 (0.00317) 0.00452 (0.00370) 0.00206 (0.00259)
DTLZ7 0.00315 (0.00024) 0.00581 (0.00602) 0.01873 (0.00952)** 0.00239 (0.00023)**

TABLE VIII: Comparison of BIBEA and Other Three EMOAs with C-metric

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7
C(BIBEA, IBEA-ε2) 0.396 0.602 0.384 0.528 0.992 0.042 0.081 0.005 0.059 0.032
C(IBEA-ε2, BIBEA) 0.185 0.123 0.396 0.738 0.089 0.045 0.030 0.150 0.020 0.011
C(BIBEA, IBEA-HD2) 0.287 0.853 0.342 0.858 0.914 0.038 0.038 0.163 0.055 0.014
C(IBEA-HD2, BIBEA) 0.227 0.085 0.454 0.326 0.265 0.056 0.089 0.311 0.048 0.024
C(BIBEA, NSGAII) 0.973 0.956 0.63 0.917 0.989 0.55 0.255 0.524 0.231 0.512
C(NSGAII, BIBEA) 0.001 0.004 0.006 0.591 0 0.01 0 0.017 0 0.001
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Fig. 2: Boxplots for ZDT4, DTLZ1, DTLZ4 and DTLZ7
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Fig. 3: Convergence Velocity


