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Abstract— Recently, many attractive brain-computer inter-
face and brain-machine interface have been proposed. The
outer computer and machine are controlled by brain action
potentials detected through a device such as near-infrared
spectroscopy (NIRS) and electroencephalograph (EEG), and
some discriminant model determines a control process. In this
paper, we introduce a fuzzy bio-interface between a culture
dish of rat hippocampal neurons and the khepera robot. We
propose a model to analyze logic of signals and connectivity of
electrodes in a culture dish, and show the bio-robot hybrid we
developed. We believe that the framework of fuzzy system is
essential for BCI and BMI, thus name this technology “fuzzy
bio-interface”. We show the usefulness of a fuzzy bio-interface
through some examples.

I. INTRODUCTION

Recently, many attractive brain-computer interface and
brain-machine interface have been proposed [1], [2]. The
outer computer and machine are controlled by brain action
potentials detected through a device such as near-infrared
spectroscopy (NIRS) and electroencephalograph (EEG), and
some discriminant model determines a control process. How-
ever, under the condition where spontaneous action-potentials
and evoked-action potentials are contained in brain signal
asynchronously, we need a model that serves as an interface
between brain and machine for a better stable control in
order to prevent runaway reaction of machine. This interface
plays a very important role to secure the stability of outer
computer and machine. The interface has two kinds of
functions: (1) a decoding of the response action potentials
to the control signal of outside machine and computer, and
(2) an encoding of the sensor signal of the outside machine
and computer to pattern of stimuli in brain and neuronal
networks. Unfortunately, it is very difficult to identify such a
function for the interface between machine and living brain
and neuronal networks. Here we consider such an interface
within the framework of fuzzy system. As a result, our study

Isao Hayashi and Megumi Kiyotoki are with the Faculty of Infor-
matics, Kansai University, Takatsuki, Osaka 569-1095, Japan (email:
ihaya@cbii.kutc.kansai-u.ac.jp, remora0909@yahoo.co.jp).

Ai Kiyohara is with the Graduate School of Science and Technology,
Kwansei Gakuin University, Sanda, Hyogo 669-1337, and the Graduate
School of Science, Osaka University, Suita, Osaka 565-0871, Japan (email:
ai-kiyohara@kwansei.ac.jp).

Suguru N. Kudoh and Minori Tokuda are with the Graduate School of
Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-
1337, Japan (email: snkudoh@kwansei.ac.jp, m.tokuda@kwansei.ac.jp).

This work was partially supported by the Ministry of Education, Culture,
Sports, Science, and Technology of Japan under Grant-in-Aid for Scientific
Research 18500181, 19200018, and 18048043, and the Organization for Re-
search and Development of Innovative Science and Technology (ORDIST)
of Kansai University.

is supportive of this framework as a strong tool of the bio-
interface. During the Japanese fuzzy boom in 1990’s, fuzzy
logic has been proven effective to translate human experience
and sensitivity into control signals of machines. Tsukamoto
[3] has argued a concept of fuzzy interface such that fuzzy
sets is regarded as a useful tool to intermediate between
language and mathematics. We believe that the framework
of fuzzy system is essential for BCI and BMI, thus name
this technology “fuzzy bio-interface”.

In this paper, we introduce a fuzzy bio-interface between
a culture dish of rat hippocampal neurons and the khepera
robot [4]–[8]. We propose a model to analyze logic of signals
and connectivity of electrodes in a culture dish, and show the
bio-robot hybrid we developed [9], [10]. First, we discuss
how to indicate the logicality and connectivity from living
neuronal network in vitro [11]. Rat hippocampal neurons
are organized into complex networks in a culture dish with
64 planar microelectrodes. A multi-site recording system for
extracellular action potentials is used in order to record their
activities in living neuronal networks and to supply input
from the outer world to the vitro living neural networks.
The living neuronal networks are able to express several
patterns independently, and such patterns represent funda-
mental mechanisms for intelligent information processing
[12], [13]. We follow the works of Bettencourt et al. [14]
such that they classify the connectivity of action potentials
of three electrodes on multi-site recording system according
to their entropies and have discussed the characteristic of
each classification. However, they only discuss the static
aspects of connectivity relations among the electrodes but
not the dynamics of such connectivity concerning how the
strength of electrode connection changes when a spike is
fired. To address this issue, we develop a new algorithm using
parametric fuzzy connectives, that consist of both t− norm
and t−conorm operators [15],in order to analyze those three
electrodes.

Next, to control a robot, several characteristics of the
living neuronal networks are represented as fuzzy IF-THEN
rules. There are many works of robots that are controlled
by the responses from living neuronal networks [16]–[21].
Unfortunately, they have not yet achieved a certain task
that experimenter desired. We show a robot system that
controlled by a living neuronal network through the fuzzy
bio-interface in order to achieve such a task [4]–[8]. This
fuzzy bio-interface consists of two sets of fuzzy IF-THEN
rules: (1) to translate sensor signals of robot into stimuli
for the living neuronal network, and (2) to control (i.e. to
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determine the action of) robot based on the responses from
the living neuronal network. We estimated the learning of
living neuronal networks with an example of straight running
with neuro-robot hybrid [9]. We show the usefulness of a
fuzzy bio-interface through some examples.

II. NEURON CULTURE AND MULTI-ELECTRODE ARRAY

The conduct of all experimental procedures was governed
by The Animal Welfare, Care and Use Committee in AIST.
The hippocampus neurons were prepared from a Wister
rat on embryonic day 17-18 (E17-18) and cultured by the
previously described method [12]. Briefly, neurons were
dissociated by treatment with 0.175% trypsin (Gibco, U.S.A.)
and cultured by plating 500,000 cells in a 7mm diameter-
glass ring on poly-D-lysine coated MED probe (Alpha MED
Sciences, Japan), which has 64 planar placed microelec-
trodes. The medium is based on D-MEM/F12, supplemented
with 5% horse serum (Gibco, U.S.A.) and 5% fetal calf
serum (Gibco, U.S.A.).

The field action potentials were recorded 10-100days after
the start of the culture. The spontaneous action potentials
(sAPs) were gathered with the MED64 system (Alpha MED
Sciences, Japan) at a 10-20 kHz sampling rate. Evoked
field action potentials (eAPs) at 62 sites in the cultured
networks were recorded with the MED64 system at a 20
kHz sampling rate. All experiments were carried out at room
temperature (20 − 25◦). The recorded spikes were detected
by our developing program, sorted and classified by the
amplitude versus decay time distributions using k-means
cluster cutting method and converted to event trains.

III. ACQUISITION OF LOGICALITY IN NEURONAL
NETWORKS

The fuzzy connective operators consist of t − norm and
t − conorm operators. The t − norm T is a projective
function expressed by T (x, y) : [0, 1]× [0, 1] → [0, 1], which
satisfies four conditions, boundary conditions, monotonicity,
commutativity and associativity. The t − norm operator T
includes logical product, algebraic product, bounded product
and drastic product. The t − conorm operator S is dual
function of the t − norm operator, which is expressed by
S(x, y) : [0, 1] × [0, 1] → [0, 1], and includes logical sum,
algebraic sum, bounded sum and drastic sum.

On the other hand, many parametric t − norm and t −
conorm operators have been proposed. By changing the
values of parameter, the parametric fuzzy operator expresses
any operator between the drastic t − norm and the drastic
t − conorm. For example, the parametric fuzzy operator
proposed by Schweizer [15] is expressed as follows:

T (x, y) = 1− ((1− x)pn + (1− y)pn

−(1− x)pn(1− y)pn)1/pn (1)
S(x, y) = (xpc + ypc − xpcypc)1/pc (2)

where, pn and pc are parameters.
By changing values of the parameter pn and pc, the

Schweizer t−norm and t−conorm express logical operator

(pn = pc = ∞), algebraic operator (pn = pc = 1) and drastic
operator (pn = pc = 0).

Fig. 2. Connectivity of Electrodes

Fig. 3. Fuzzy Sets of the First Example of Electrode Analysis

By the Schweizer t − norm and t − conorm operator,
we formulate a new algorithm for analyzing logicality and
connectivity of the living neuronal networks. Now, we se-
lected an arbitrary set of three electrodes x, y, z, and analyzed
the coherence pattern between the three electrodes. First,
we distribute the data of pulse-time series in several time-
bins, and define a time-delay deviation between time-bins
of two electrodes. The proposed algorithm is shown in
Figure 1. For the electrode z, we shape a fuzzy set of the
pulse frequency, F z

i , at the i-th time-bin by the following
membership function which has the center azi and width czi .

azi =
pzi − spz

lpz − spz
(3)

czi = |azi − E(azi )| (4)
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Fig. 1. Algorithm for Analysis of Action Potentials in Cultured Neuronal Network

where, pzi is the number of pulse at the i-th time-bin, spz

and lpz are the minimum and maximum number of pzi ,
respectively. E(azi ) is the average value of azi .

The membership function F x
i−sx

with the delay deviation
sx of the electrode x is shaped as same as the electrode z.
Our purpose is to let the degree of coincidence, μ∗

xz , between
F z
i and F x

i−sx
maximize in the parametric conditions of the

electrode x. To let the degree of coincidence maximize, the
width of time-bin wx and the delay deviation sx are changed
widely.

μxz = sup
t

μF z
i
(t) ∧ μFx

i−sx
(t) (5)

μ∗
xz = max

wx,sx
μxz. (6)

We calculate μ∗
yz between the electrode y and the electrode

z as same as the electrode x and the electrode z. When two
couples of coincidence degrees, μ∗

xz and μ∗
yz , were obtained,

we can represent the connection of electrodes as a kind of
connectivities as shown in Figures 2.

Next, we calculate the output of the Schweizer operator
with two centers of membership functions, axi−sx

of the
electrode x and ayi−sy

of the electrode y.

T (x, y) = 1− ((1− axi−sx)
pn + (1− ayi−sy

)pn

−(1− axi−sx)
pn(1− ayi−sy

)pn)1/pn (7)

S(x, y) = ((axi−sx)
pc + (ayi−sy

)pc

−(axi−sx)
pc(ayi−sy

)pc)1/pc . (8)

We minimize the error deviation between the center azi ,
and the Schweizer’s output, T (x, y) and S(x, y), by changing
the parameter pn of t− norm and pc of t− conorm.

p∗ = {pn, pc| min
pn,pc

(|T (x, y)− azi |, |S(x, y)− azi |)}. (9)

To illustrate the proposed algorithm, we show a simple
numerical example. The spike frequency of three examples
of electrodes x and z are shown in Figures 3 to 5, and Table I.
At each example, we search a time-bin of x electrode which
coincides most with the spike frequency of the sixth time-bin
of electrode z. At the first example, the spike frequency “2”
of the fourth time-bin of electrode x coincided most with
the spike frequency “2” of the sixth time-bin of electrode z
with the degree μ∗

xz = 1.0 of fuzzy sets. Figures 3 shows the
result of the first example. At the second and third examples,
the spike frequency “3” of the ninth time-bin of electrode x
coincided most with the spike frequency “2” of the electrode
z with μ∗

xz = 1.0, and the spike frequency “1” of the sixth
time-bin of electrode x coincided most with the the spike
frequency “1” of the sixth time-bin of electrode z with μ∗

xz =
0.44, as shown in Figures 4 and Figures 5. We can understand
these results intuitively.

Finally, we analyzed the logicality of neuronal networks.
We detected action potential by the electrode of 64 channels
in 20KHz for 120 seconds. For tangible data analysis, we
picked a spike fired at the 60th electrode (60el), and selected
three sets of electrodes for analysis. Figure 6 shows the
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Fig. 4. Fuzzy Sets of the Second Example of Electrode Analysis

Fig. 5. Fuzzy Sets of the Third Example of Electrode Analysis

Fig. 6. Experiments

Fig. 7. Analysis of Action Potentials

location of three combinations. At the 60el, we detected
the increasing of pulse frequency at 102.4s after the pulse
frequency drastically decreased to 6 times at 95s. We focus
this pulse fired at 102.4s, and analyzed how this pulse
influenced for the following three combinations.

1. (x, y, z) = (51el, 59el, 60el)
2. (x, y, z) = (43el, 50el, 60el)
3. (x, y, z) = (35el, 42el, 60el)

The result is shown in Figure 7. At the first combination
of the electrodes (51el, 59el, 60el), the maximum degrees
of coincidence were obtained as μ∗

xz = 0.85, μ∗
yz =

0.75 with wx = 11s, wy = 10s, and the parameter of
Schweizer operator was converged to p∗ = pc = 730.5. At
the second combination of the electrodes (43el, 50el, 60el),
the maximum degrees of coincidence were obtained as
μ∗
xz = 1.0, μ∗

yz = 1.0 with wx = 11s, wy = 10s,
and the parameter of Schweizer operator was converged
to p∗ = pc = 617.98. At the third combination of the
electrodes (35el, 42el, 60el), the maximum degrees of co-
incidence were obtained as μ∗

xz = 0.76, μ∗
yz = 0.91 with

wx = 11s, wy = 10s, and the parameter of Schweizer
operator was converged to p∗ = pc = 630.23. From these
results, we conclude that the pulse fired at 60el at 102.4s
propagates to (51el, 59el) → (43el, 50el) → (35el, 42el),
and then, the parameters of Schweizer operator have been
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TABLE I
EXAMPLES OF ELECTRODE ANALYSIS

Time
Bin 1 2 3 4 5 6 7 8 9 10

Example 1
X 2 3 2 2 0 1 3 1 3 1
Z 0 0 1 3 1 2 0 0 0 0

CofX 0.67 1.0 0.67 0.67 0.0 0.33 1.0 0.33 1.0 0.33
WofX 0.067 0.4 0.067 0.067 0.6 0.27 0.4 0.27 0.4 0.27
CofZ 0.33
WofZ 0.27
μ 1.0 0.6 1.0 1.0 0.36 0.52 0.6 0.52 0.6 0.52

Example 2
X 2 3 2 0 0 1 0 1 3 1
Z 0 0 1 0 0 2 0 0 0 1

CofX 0.67 1.0 0.67 0.0 0.0 0.33 0.0 0.33 1.0 0.33
WofX 0.23 0.57 0.23 0.43 0.43 0.1 0.43 0.1 0.57 0.1
CofZ 0.33
WofZ 0.8
μ 0.68 1.0 0.68 0.19 0.19 0.26 0.19 0.26 1.0 0.26

Example 3
X 0 1 0 2 0 1 0 2 0 0
Z 0 0 1 2 3 1 0 0 0 0

CofX 0.0 0.5 0.0 0.1 0.0 0.5 0.0 0.1 0.0 0.0
WofX 0.3 0.2 0.3 0.7 0.3 0.2 0.3 0.7 0.3 0.3
CofZ 0.33
WofZ 0.1
μ 0.17 0.44 0.17 0.17 0.17 0.44 0.17 0.17 0.17 0.17

converged to infinity, p∗ = pc = 730.5 at (51el, 59el),
p∗ = pc = 617.98 at (43el, 50el), and p∗ = pc = 630.23 at
(35el, 42el). These parameters mean logical sum. However,
we should notice that the parameter of Schweizer operator
at around 102.4s is p∗ = pn = 0.0, which means the drastic
product. Given this result, we conclude that the logic of
signals among the electrodes was shifted to the logical sum
from the drastic product. Consequently, the logic of signals
among electrodes drastically changes from the strong AND-
relation to the weak OR-relation when a crowd of the pulses
was fired.

IV. FUZZY BIO-ROBOT SYSTEM

Fuzzy bio-robot includes two kinds of fuzzy logic units
as fuzzy bio-interface, that is FLTD and FLBU. The FLTD,
Fuzzy Logic unit in Top Down, is located in the top-
down processing, and infers the rotation speed of robot
actuator from the pattern of action potential in the multi-
electrode array. The FLBU, Fuzzy Logic unit in Bottom
Up, is located in the bottom-up processing, and infers two
electrical stimulation points in the multi-electrode array from
the output values of robot sensors. Figure 8 explains the
architecture of living neuronal networks and robot.

We designed a closed loop, where the Khepera II receives
the rotation speed of actuator from FLTD with eight inputs of
patterns in [-20, 20] by multi-electrode array. Additionally,
the multi-electrode unit receives stimulation points from
FLBU with eight IR sensors of the robot. We designed 512
fuzzy rules with eight inputs and two output in FLBU and
FLTD, respectively.

Now, we should explain how to design fuzzy rules in

Fig. 8. Living Neuronal Network and Robot

Fig. 9. Experimental Course

the FLTD. First, we divide 64 electrodes in eight parts as
inputs for FLTD, and we define two kinds of membership
functions of ”High” and ”Low” at eight parts of electrodes.
Two electrodes are arbitrarily selected as stimulus points,
and we detect the potential response for the first stimulus
from other 62 electrodes. The pulse pattern of potential
responses is input to the antecedent part of fuzzy rules,
and the membership value of each rule is calculated. Next,
we detect the pulse pattern of potential responses for the
second stimulus, and calculate the membership value of each
rules. By two different membership values, we calculate the
subtraction between them and assign the motor speed of
robot actuators to rules whose differentials are large. We
additionally adjust the value of motor speed better with
the steepest descent method. If the neuronal networks have
regularity of logical potential response well, the robot will

2421



be controlled well.
To demonstrate the regularity of neuronal networks, we

applied the fuzzy bio-robot system to the straight running.
We estimate if the Khepera robot can run straight in a track
without bumping into a wall. The running track is the length
of 120mm and the width of 90mm. Figure 9 shows the
running track.

Fig. 10. Learning of Fuzzy Rule

The deviation between the output of FLTD and the target
output is shown in the part A of Figure 10. The variance
of each 10 times of learning is shown in the part B. The
deviation is gradually decreasing according to the number of
learning. Actually, the deviation of the left actuator, Lspeed,
decreased by 40.3% for 50 learning times and it becomes
1.673. The deviation of the right actuator, Rspeed, decreased
by 27.8% and it becomes 1.224.

To discuss the fuzzy rules for avoiding collision with wall
in more detail, we monitored fuzzy rules whose membership
values are relatively higher until 40 seconds as shown in
Figure 11. At the part A, the Khepera robot detects the wall in
the left side, and turns the right with the 13th and 14th fuzzy
rules, or the 15th and 16th fuzzy rules, simultaneously. The
specificity of these fuzzy rules pattern appears regularly. In
other words, the neuronal networks have regularity of logical
potential response.

We observed the trajectory of the Khepera by camera
which placed above of the track course. We image a base
line drawing along the centerline of the track course from
the start position of the Khepera. We detected the deviation
between the base line and the trajectory of the Khepera,
and defined absolute value of the deviation as the evaluation
value. Figure 12 shows a trajectory of the Khepera. Figure 13
shows the change of the evaluation by trials of iteration. The
evaluation value is decreased by trials of iteration, and the
Khepera could run along the base line. We conclude that the
decreasing of evaluation will come from mainly the learning
of neuronal networks.

Fig. 11. Membership Values of FLTD until 40s

Fig. 12. Trace of Khepera Robot

In addition, we calculated the ratio that the Khepera ran the
whole distance by 20 trials in a course as shown in Table II.
Among 20 trials, the Khepera completed the task 16 times,
and it crashed on the wall and stopped there 4 times. In
this result, we may conclude that the logic of signals among
living neuronal networks represented as fuzzy IF-THEN rules
for the fuzzy bio-interface is rather efficient and effective
comparing to the other similar works. In such works, the
success rate of 80% is considered extremely high.
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Fig. 13. Trace Deviation of Khepera Robot

TABLE II
COMPLETED RUN RATE OF KHEPERA ROBOT

Experiment Number Rate
Completed Run 1,3,4,5,6,7,8,9,10,14

15,16,17,18,19,20 80.0%
Incompleted Run 2,11,12,13 20.0%

V. CONCLUSION

In this paper, we discussed how to indicate logicality of
living neuronal network with data method of fuzzy con-
nective operator, and applied fuzzy bio-interface to control
fuzzy bio-robot. We should discuss the relationship between
learning of living neuronal networks and adaptability of
fuzzy logic more deeply in the near future.
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