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This chapter proposes 4 new self-tuning method for fuzry reasoning based on the
application of a genetic algorithm. Simplified fuzzy inference rules whose consequent
parls are expressed in ferms of real numbers are emploved in this method. Using the
genetic algorithm, the number of inference rules and the shapes of the membership
functions m the antecedent parts are determined 50 as 1o optimize an infoomation
criterign, The consequent paris of the inference rules are oplimized by the descent
method from inpul-catput dats. Using the proposed methad, the inference rles are
determined %o as to optimize the leaming and peneralization capabilities of Ry
reasuning. Mumerical examples are provided to illustrate the effectiveness of the
proposed method
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A SELF-TUNING METHOD OF
FUZZY REASONING
BY GENETIC ALGORITHM

H. Marmura, . Hayashi and M. Wakami
Cenlral Ressarch Laboratories,
Matsushita Electric Incustrial Co,, Lid, Osaka JAPAN

1. INTRODUCTION

[n order to provide fusey reasoning with learning function, various learning
tethods have been proposed. These methods include the self-luning fuzzy controller
emplaying a descent method|1-3] and the neural netwark driven fuzzy reasoning[4],
which can aptimize the shape of membership funclions in inference rules from inpul-
oulput data. However, Lhese methods have sulfered from the inherend prevequisite
problema, siuch as an advanced sstfing of the nurmber of inference rules, which havwe
to be derived by dnal and error.

The result of the learning depends on the number of inference rules, When
the mumbier of inference rules is amall, the inference rules cannot. express the input-
output relation of given data well. On the contrary, when the number is large, the
generalization capability of the inference rules is sacrificed because of Lhe overfitling.
Therefore, the number of inference rules has to be determined from a standpaint of
averall lenrining capabilily and generalization capability, The work Lo determine Ehe
number of infarence rules requires 4o designer & large number of experiments by trisl
and errar,

In arder to solve such problem, a new learning method of fuzzy ressoning by
means of a genelic algorithm is proposed here. The genetic algorithm(§, 6] is an
optimization method developed from the theory of biological evolution.

In this methed, a smplified fussy reasoning in which the consequent parts
are expressed in resl numbers is emploved, The tismber of nference rules and the
shapes of membership funclions in the sntecedent part are determined by applying
the genetic algorithm, and the real numbers of the consequent parts are derived by
using the descent method.

In this chapter, the conventional learning method of fuzzy reasoning emplaying
the descent method, which constitutes the foundation of the proposed method, is
described first. Then, an algorithin Lo determine the structure of the antecedent
parts by using the genetic algorithm is explained. Finally, in order to demonstrate
the effectiveness of the present method, some numerical examples are reported.
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2. A CONVENTIOMNAL SELF-TUNING METHOD

2.1. Learning Algorithm Using Descent Method

Simplified fuzzy reasoning in which the consequent parta are expressed by real
numbers is employed in this methad. Expressing input variables by I,‘,l:;ll =1,...,m]
and an cutpul wariable by y, the infecence tules of the simplified fuzzy reasaning can
be expressed by the following:

Rulei: I =, is Ay and,. .., and 2, is A then  y ey (1)

wherein .06 = 1,...,n) is the oumber of the inference rales, Ag,-.., A are the
membesehip funclions in ihe antecedent part, nne ey is o real pember in the conse
quenl part. The sulput of the simplified fuzxy reascming, ¥, can be derived by using
the following equations:

pi = [T Aulss) (2)

=i

_E: FIERR
== (3)
o
(1 4]
where g; is a membership value of i-th inference rule.

By using a descent method, the real numbers w; of the consequent parls sre
optimized from the input-output datafl, 2], The descont method can alter the tuning
paramaters so as to minimize an objective function H, which is expressed by the
follewing equalion in this case:

H= _:—Ijj.-"" —yp 4]

where ™ is a desirable oulpul data for the p-th input data (xf,... 22 ], and y* is an
output of the fugzy reasoning correspanding to the same p-Lh input data (25, ... 2%].
The objective function F means Uhe squared inference error.

Using the descent methad, the learning rule of the real aumb-ers in the conse-
quent parls can be expressed by the following:

wif +1) =w(r) - K- GH

= () = B (g7 =) 15)
Yol

where ' is the number of iteralion of learning, uf is & membership value of the «-th
inferenca rule corcesponding Lo the pih input-autpul data, and K s & constant.
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By applying this learning rule to the input-output data repentedly, the conse-
quent paris are updaled so a8 to minimize the objective funckion. In this case, Lhe

result of learning doesn’t converge into a local optimum, but into a global eptimum,
because & Hfdw! = 0 is obtained for all ¢ [7].

2.2. Problems of Conventional Sell-Tuning Method

The input-output dats for learning (Training Data: TRD), and the inpuat-
output data for evaluation (Checking Data: CHD), are expressed by the following:

TRD : (e s2o0™), p= Lo P
CHD  [af 300 e=1,.04.

The inference erroes for Lhess twa Lypes of input-output data are specified respectively
by the fallowing equations:

Erng = 7 E{F" ™) (&)
i 9
Ecup = g E.fjr" -y (7)

Figure | shows generalized relations between the number of inference rules and
the inference errors Frap, Bope decived by Lhe oplimized inference rules using the
descent method, In this melhod, the larger the number of inference rules, Lhe smaller
the inference error Eppn oldained. However, the inference error Eppp becomes langer
for a larger number of inference rules afler it exceeded a certain threshold value as
ghown in Figure 1. This phenrsmenon s caused by an excessive learning applied to
the TRI}

The generslization capability of the inference rules can be expressed by the
inference errar EIS'HI:I- Therelore, il can be said that the gen-aralim'mn 1.'-B-|:Iilhi|i-|-j'
ol the inlerence rules would be lower if an excesive mimbesr of inference rules were
applied for the learning.

In this eonventional sell-luning method, the designer has to search Lhe optimal
mumber of inference rabes by trial and ecror. The work to seaich the aptimal number
of inference ules requires the designer Lo peclorm a large number of experiments.

The descent method can oplimize not only the real numbers in the consequent
parts, but alse the membership functions in the antecedent parts[l]. For the learning
of anly the consequent part, the result of learning converges inlo an globsl oplimam
in genersl, Howewver, the result of learning the antecedent parl can converge inlo &
lacal aptimmim.
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3. OPTIMIZATION OF THE INFERENCE RULES BY
GENETIC ALGORITHM

The proposed method is to oplimize the pumber of inference rules and the
shapes of the membership funetions 6 the antecedent parts by a genetic algorithm,

3.1. Genetic Algorithm

A genetic algorithm fa.l:-hernh:d. GAY |ﬁ-I fi] iz & melbod lo obtain an opii-
mal solution by applying & theory of biclogical evolution. The most advanlageous
feature of the GA is & possibility of escaping from local optimam because of proba-
hilistic operations such as crossover and mulolion. In the GA, & selution candidate
& which maximizes an objective function E(s,] called ftness, is searched, The sola-
tion candidale s expressed by the siring, called sndvndual, which i3 expressed by the
fD“llJWil.‘lE:

oy - I"rl.{‘ﬂ o E'rﬂ [E]
where Loy, (9 = 1,... 0] is a variable taking a valus of sither *1" or 7. For instance,
an exampls of the individual s, with & = 13 is expressed by the following string:

5, = 1001000110011 . ()
A set of individuals, 5, called population, is expressed as follows:

8= {5),52,-.+,98) {10}
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Figure 2: Qpecatars in Genelic Algorithm

3.2. A Learning Procedure of GA
Ap optimal seluticn is searched by spplying the following procedure:

1) The individuals a5, 85,..., 4% which conslitute a population 5(t] of the 0-th
geaeralion [§ = ) are determined by uniform randem nambers.

2y The filoess Ei=) for =ach individual 5. s derived to determine a s=lection
probability P, (t), which is expressed by the following:

Polt) = ool [11]
Y E{s{t)
r=l
where r =1,..., 1.
And, then, the number of the subsequently produced individual, &, is initialized
at 1.

3} Two individusls &0f) and 2,0} are selecked out from the populstion 5(f) in
accordance with the sslection probabilitics Fy(f) and PR

4] An operation called crossover, shown in Figure 2, is applied to the individuals
si(t) and s5;(2). The crossover operation selects a boundary in the strings with
probability of 1/{G—1], and exchanges the blocks of strings about the boundary.
Ope of the two individuals produced by this operation is selected at random,
and i norninaled as the new individual 830t}
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Figure 3t Membership Functions

5) An cperation called mutation is applied to s0(f). By this, each element of the
individwal s [1) is reversed according to & mutation probability F. Taking the
example showing Figare 2, the element poaitioned third from the Bell end s
reversed by the mutation,

B) The oumber of newly produced individuals, k| i= compared with the tolal num-
ber of individuals, &, and if k& < R, k 5 incremented by one, and steps I:_ﬂ} Lo
[6] are repeated. Otherwise, the algorithm procesds to the next step.

T) The sew population, 51 = [}, ... 8%}, produced in steps (3] to (6,
substitule into Lhe population on the next genecation S+ 1),

B) The generation [ i3 incremented by ane, and the steps (2] ta {B) are repeated
until the terminating conditions are satisfied

3.3, Algorithm to Optimize Inference Rules

The aplimization of the number of iofer=nce rubes and the shapes of member-
ship functions in the antecedent part by means of the GA is described bere.

Figure 3 shows the membership functions in the antecedent part :mpl,n:u_l,red in
Lhe .ﬁmpl'iﬁn:l F|.|.'.|:|::|r n:.amni.n.g_ The mmhq.r.h'ip [unciron takes lriamsul,.;; shape, and
the width of esch membership Tunction is defired to be the length betwesn the centers
al oeighboring membership functions.

The number and shapes of membership functions can be expreseed io terms of
strings congisting of “0° and “1™ ae ghown in Figure 3, whersin the ceoler pasition
af each membership [unclion 15 expressed by “1". The string can be expressed as
followrs:

by .- g where §= 1., {12}

Liyhr = 1,... &) is a variable laking a value of gither “0™ or “1™.
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In this method, since the atiing i provided for esch of the inpul variables
Iy, a string combining the strings Ly provided for each input vasiable zj, which i
m{m:::d_ El_'f }_'.-,...,L,Bhl-,.fﬁ-..ﬂ.,“...ﬂ-mm is considered an indiwidual i the GA.
The optimal number of membership functions and the center positions of these are
searched for each inpul variable by the GA,

Assuming the existence of the membership lunclions on both sides af the do-
main of each input variabke, the following equations could be lormulated.

{ Lp=1 (1)

Lj:’."=l w i j= l.....m.

As the fitness in the GA, an informalion criterion[8] shown below is emplayed
here:

o= N dogl Erap) + 3 The number of parameters) [14]
The information criterion £ shows the overall capahility for learning and generaliza-
tien of fuzzy reasening. A ameller value of the inflormalien criterion i conaidared to
mmean better infecence rules, Expressing the total number of membearship fanctions

allocated to the inpul variable £; by N, the number of parameters shown in Eq. {14)
can ke expresmed by Lhe following:

il e
The number of parameters = 3 (M; — 23 + [[ M. {15)
=i

i=i
The fitness Eia.] in the GA is defined by the formula:
B, ) = max Clap) = Ca, ) {16)

In this method, the number of membership functions and the center positions of the
membership functions maximizing the fitneas Els, ) are derived by using the GA,

Although the informalion crterion expresed by Eq. (14)] ia employed a8 a
fitness in Lhis case, the use of some other ohjective function such as the unhiasedness
criterion could be hetier depending on the actual problem.

34. Self-Tuning Procedurs

The precedures to obbabin the optinal inference rules wsng the GA s shown
bep o

[SI:Ep I] All of the individuals a,[i] where r = Bt i on Lhe 0-th Fnﬁlﬂ.iun |:t = |:|:|
are determined by wniform random nombers. In & concrete form, because of the
conditions given by Eq. (13), Liz.. .., Ligoy values of individuals s.(¢) are sol
at either “0" ar “1" by the uniform random nombers.
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[Step 2] The leaming by the descent method is spplied sccording to [Step 2-1] to
[Step 2-5] in order to determine the real numbers of the consequent parts. These
processes have lo be applied Lo all individuals 5,01}, where r =1, .. R

To begin with, the oumber of individual, r, is inilialized at 1.

[Step 2-1] The number and the shapes of membership functions in the an-
tecedent parte are determined according to the sleing of the individeal
Acft]. Then, the mimber of the input-outpat dats, p, s initialized at 1,
and the number ol iterations of learning by descent method, ©, I8 initialized
at 1.

[Step 2-F] The fuzzy rensoning is applied to the p-th input data (25,..., 25}
by uaing Eqa. (2] and (3}, in order o determine the membership value o
aof each inference rule and to obtain Lhe output of the fuzsy reasoning y*.

[Step 2-3] Based on the cutput of the fuzzy reasoning yP, the membership valus
w] and the sutput data g™, the real numbers in the consequent part, w;,
are updated by using Eq. (4],

[Siep 24| Comparing the number of input-ouiput data, p, with the lolal meme
ber of input-output data, P. [T p < P, the algorithm is returned to [Step
2-2] alter a.dd'iuq; 1 io p, stherwise, the algarithm procesds io next step.

[Step 2-5] In this step, & change of the inference ervor, Eran(t’)— Erao{d’—1),
ig derived. When the change satisfies the following formula, learning by
the descent method s Lerminatbed:

|Ernplt') — Erpp(t — 1) < & {17]

where § 16 & Lthreshald valse 1o judge the convergence of the inferance error
Erpp, which has te be st in advance,

If Eq. (17} is not satisfied, after adding 1 o ¢ and initializiog p to 1, the
process is returned Lo [Step 2-2].

[l Eq. {17} s satisfed, the Giness E(s.) 15 derived [rom the valoes of
converged inference errors Eqpp by applying Eqgs. (14] to {16), and the
selection probability P (1] are deqved by Eq. (11}, Then, if r < &, the
IlEnri.I:hm is retwrmed to |El.-¢|_:| 2-]] aller .l.dding l tor, o{h:[wip::, the=
numbes of the individual produced next, k is initialized at 1, and the
algorithm procesds Lo next abep,

[Step 3] Two individoals s;(t) and a;(1) are selecied from S(i) according to the
pelection probabilities Pyft) and Pylt).
[Step 4] The crosover is applied to these two selected individuals to derive a new

individual #(£]. In this case, since the fuzzy reasoning has m input variahles,
m-points crosover[5] iz applied.
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[Step 6] The mutation is applied Lo each of the elements of individual s{(t} according
Lo the mutation probability P .

[Step 6] The series of processes, [Step 3] to [Step 5], is repeated until the number of
new individual , &, becomes fL

[Step 7] A new population St} = [ (4], 8500}, . ., 85010 ) produced by the processes
from [Step 3] to |Step 6] i defined as 508+ 1).

[Step B] The number of the geseration, €, 4 incremented by one, and the processes
from [Step 2] to [Biep B] sre vepeated until & convergence of the population §
ia ohlained,

A individual having the highest fitness in the converged population s defined
an Lhe final solution.

4, NUMERICAL EXAMPLES

In order bo demonstrate the ussluloess of the GA method, two simple idents-
fication problems of nonlinear systems are discossed Lere,

The two nonlinear systems having single input snd single outpul are shown
belaw:

=z T 50
g oxs (18}

SYSTEM 2 : ywl—-s—2'+2"+ R, {19)

SYSTEM 1 : p= [

where K ig & Tunction that geonecales Lhe random numbers with gaussian distribution
having an average value of 04 and a standard deviation of 1.0,
By changing the inpul x in Eqs. (1E) and (18] in the range |-1, 1] sceording
o the uniform random numbers, input-ostput dats are pesecated respectively. The
produced input-output data are divided into the TRD and the CHD in cach system,
By wsing the GA methed, each of the input-output relations given by Eqs
(18) and [19) is identified in terms of fozzy inference rules from the prodsced TRD,
The initial conditions lor this GA methed are shown in the following:

The totsl number of individuala : R =120,

The length of individaal : =3,

The mutation probability B e 1
The number of genecabions ¢t 8D

The threshald value v i =1.0 = 10=%

Figure 4 shows the input-sulput relation of SYSTEM 1. In this example, 40
TRD snd 40 CHD are used. The square dots in Figure 4 ahow the TRD.
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Figurae & shows the membeship fonclions oblaimed by applying the GA to the
TRD of SYSTEM 1. The number of inference rules is delermined at 7 by the GA.
In the region [z = 0) having nop-linear input-output relation, more inference rules
are assigned than in the region {x < 0] having linear input-sulpot relation. This
result indicales that this sell-tuning methad can arcange the membership functions
in accordance with the nonlinearity of the given TR,

Figure 6 shows the output of Tuzzy reasoning wsing the optimized memberahip
function of Figure § In Figure 6, the cutput of fugzy reasoning eoincides with the
true output of Eq, (18) approximately, Therefore, it can be said that this sell-luning
meethad acquires the input-cutput relation of given TRD well, Using the inlerance
rules obtained by the GA, the Eppp and Epyp became 2.1 = 107% and 5.7 x 10=%,
peapectively

In order e show Lhe higher learning capability of Lthis method, a comparison
with & conventional self-tuning method was conducted, As the conventional metbod,
the self-tuning contrelier by the descent method[1] only was employed, and the infer-
ance riles wers constructed from the same THE.

In F‘:igu.re Tq relations of Lthe conwentional method between the number of infer-
ence mules and the inference errors By gn, Eopp are shown, The numbers of inferencs
rules in the conventional mathod were varied from 2 to 2T manvally. Figure T proves
that & kower infecence error Ergp 15 oblained for a higher number of inference mles,
while a higher inference error Egyrp i3 obtained for a higher number of inference
rubes excesding a certain threshold. As shown i Figare 7, the number of inference
tales which gives a minimam Scgp B 7. The values of Erpp and Ecpp st T infer-
ence rules are 3.0 = 107% and 6.3 = 107%, respectively, both of which are larger than
tbose obinined by the GA. This shows that the inference rules obbained by the GA
hawe & higher learning capability than those abtained by the conventional self-tining
miedhosd,

In erder b demonslrate thal the solution obtained by the GA doese't converge
nto a local optimum but to a global optimum, & result of searching in total space is
shown next, [n this example, the total pumber of aolution candidates is 21 = 2048,
The learning of the conssquent parts by the descenlt method is applied Lo all of the
MME sodution candidates in order to derive the value of the information criterion €.
The resulis awre shown in Table |, whese they sre sorled in lerma of the value of
the information coberion. Table | shows thal Lthe optimal selution oblained by Lhe
tolal search is 1000001110101, This selution coincides with the one obtained by the
G A, This example shows that ihe optimal inference rules minkmizging the value of the
information coiterion is indeed oblained by the GA.

The result of learning applied to SYSTEM 2 is shown next. Tt is very often that
ooise compinent is included in obserwed input-output data. This example simualates
the case whers input-outpit data include noise component. Through Lhis example,
the generalization capability of the GA method &= shewn.

Figure 8 ahows the input-autpul relation of SYSTEM 2, the thick line shows
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Talkle 1: Result of $HHIFJIiHE in Taotal $pm:r= [S}'ll:i:m. I]

Mo SLrings o
1| INCOODDELETEON | 49065
2| 100001E1E1I0 | -494.7
3| 1000p01111101 | -494.3
4 | INDI00ETT1E0L | 4908
G | I00ODE1 NI | 4935
G| T100aniLi1Iaed | -493.1
T 100ODILILNLY | -400.7
8| 101011110 | -400.7
HO4S | 10000RanamaLl §o-94.0

the true input-cutpul relation withoul random numbers, the square dots show Lhe
TR, Since & term having random numbers is included in Eq. (19), & noise component
is included in the produced TRD and CHID. Tn this example, 400 TR and 400 CHD
are uaecl.

Il the conventional sellluning method were applyed for such TRD by giving
a large number of inference rules, the generalization capahbility of the inference rules
could be particularly low. Therefore, the searching of an optimal number of inference
rubes become more impartant in such case,

Figure 9 ghowa the menbarship functions obtsined by applying the GA to the
TRD of 5¥Y5TEM 2 . The number of hnferencs rules is determined at small sumber
4. This result shows thal the number ol inference rules is detenmined so 2= Lo aveid
overfitting by the GA.

Figure |0 ahowe the oultput of the Tuzzy rensoning cplimized by the GA, the
thick line means the output of the oplimized luzzy reasoning, Lhe thin line shows the
true cutput without random numbers. Since Figure 10 shows that the cutpul of the
fuzay reasoning i8 nol conatrained by the noise af the TRIY, and coincides with Lhe
trus sulput approximalely, it can be said that the GA metbed has high generalizalion
capahality.

The results of a total search similar to the one carried out for SYSTEM 1,
are shown in Table 2. The optimum solution obtained by the tobal search coincides
with the sclution 1000010001001 abiained by the GA. This example shows also hat
optimum inference rules can be obtained by the GA.
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Table 2 Result of Searching in Total Space (SYSTEM 2)

No. Slrings [
1| Inonolianimal | 29.2
S| 10000001101 [ 314
1000100000001 [ 224
4 | 1o0o1mnIeal | 333
5 | 100001001101 | 334
i | i0o01aoaiaLal | 337
T | looapaianiioL | 33T
8 | 10EODIMODI0Gl | 3358
H4E | IRIananonol | 3914
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5. CONCLUSION

A new l:|'|'-{|.'||:|i.n.p_' method of fuzzy r-ﬂu{rqing h_l,l the lEem-.liu: n.'lgve;u'i{hm is pro-
posed here. With this method, the number of inference rules and the shapes of mem-
bership functions in the antecedent part are determined by the genetic slgorithm se
a8 Lo pplimize an information crilerion expressing Lhe quality of the inference rules.

Using two numerical examples, we have shown that this GA method has the
higher learning capability than the conventional self-taning method using the descent
method,

Ag o futoure problem, the effectivencss of the propossd method, when it i
applicd to more complicated ayslesms having mulli-inputs, should be established.
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